File size: 5,239 Bytes
d0ff5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import streamlit as st
import torch # we use PyTorch: https://pytorch.org
import torch.nn as nn
import torch.nn.functional as F


# model hyperparameters
batch_size = 32
block_size = 128
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embed = 256
n_heads = 8
n_layers = 6
dropout = 0.2
# -------------------------------------------------

# model architecture
class AttentionHead(nn.Module):
  """a single head of self attention"""
  
  def __init__(self, head_size):
    super().__init__()
    self.key = nn.Linear(n_embed, head_size, bias=False)
    self.query = nn.Linear(n_embed, head_size, bias=False)
    self.value = nn.Linear(n_embed, head_size, bias=False)
    self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
    
    self.dropout = nn.Dropout(dropout)
    
  def forward(self, x):
    B, T, C = x.shape
    K = self.key(x) # (B, T, C)
    Q = self.query(x) # (B, T, C)
    
    wei = Q @ K.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, H, C) -> (B, T, T)
    wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
    wei = F.softmax(wei, dim=-1)
    wei = self.dropout(wei)

    V = self.value(x) # (B, T, C)
    out = wei @ V # (B, T, T) @ (B, T, C) -> (B, T, C)
    return out
  
class MultiHeadAttention(nn.Module):
  """a multi-head self attention layer"""
  
  def __init__(self, n_heads, head_size):
    super().__init__()
    self.heads = nn.ModuleList([AttentionHead(head_size) for _ in range(n_heads)])
    self.fc = nn.Linear(head_size * n_heads, n_embed)
    self.dropout = nn.Dropout(dropout)
    
  def forward(self, x):
    out = torch.cat([h(x) for h in self.heads], dim=-1) # (B, T, n_heads*C)    
    out = self.fc(out) # (B, T, C)
    out = self.dropout(out) 
    return out
  
class FeedForward(nn.Module):
  def __init__(self, n_hidden):
    super().__init__()
    self.net = nn.Sequential(
      nn.Linear(n_embed, n_hidden),
      nn.ReLU(),
      nn.Linear(n_hidden, n_embed),
      nn.Dropout(dropout)
    )
    
  def forward(self, x):
   return self.net(x)
  
class Block(nn.Module):
  def __init__(self, n_embed, n_heads):
    super().__init__()
    self.sa_heads = MultiHeadAttention(n_heads, n_embed // n_heads)
    self.ffwd = FeedForward(n_embed*4)
    self.ln1 = nn.LayerNorm(n_embed)
    self.ln2 = nn.LayerNorm(n_embed)
    
    
  def forward(self, x):
    x = x + self.sa_heads(self.ln1(x)) #  [batch_size, block_size, n_embed]
    x = x + self.ffwd(self.ln2(x)) # [batch_size, block_size, n_embed]
    return x

class BigramModel(nn.Module):
  def __init__(self):
    super().__init__()
    self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
    self.position_embedding_table = nn.Embedding(block_size, n_embed)
    self.blocks = nn.Sequential(*[Block(n_embed, n_heads) for _ in range(n_layers)])
    self.ln_f = nn.LayerNorm(n_embed)
    self.lm_head = nn.Linear(n_embed, vocab_size)
      
  def forward(self, idx, targets=None):
    # idx and target are both [batch_size, block_size]
    B, T = idx.shape
    
    tok_emb = self.token_embedding_table(idx) # [batch_size, block_size, n_embed]
    pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # [block_size, n_embed]
    x = tok_emb + pos_emb # [batch_size, block_size, n_embed]
    x = self.blocks(x)
    x = self.ln_f(x)
    logits = self.lm_head(x) # [batch_size, block_size, vocab_size]
    
    if targets is None:
      loss = None
    else:
      B, T, C = logits.shape
      logits = logits.view(B*T, C)
      targets = targets.view(B*T)
      loss = F.cross_entropy(logits, targets)
    
    return logits, loss
      
  def generate(self, idx, max_new_tokens=100):
    # idx is (B, T)
    for _ in range(max_new_tokens):
      # get the last block_size tokens
      idx_cond = idx[:, -block_size:] # (B, T)
      # get the predictions
      logits, _ = self(idx_cond)
      # focus only on the last time step
      logits = logits[:, -1, :] # becomes (B, C)
      # apply softmax to get probabilities
      probs = F.softmax(logits, dim=1) # (B, C)
      # sample from the distribution
      idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
      # append sampled index to the running sequence
      idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
      
    return idx
# ----------------------------------------------------------------

# helpers
chars = list("!$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz")
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# ----------------------------------------------------------------

# load model
model = torch.load('model/complete-model.pt')

# inference
slider_value = st.slider('Amount of text to generate', min_value=100, max_value=2000, value=500, step=5)
if st.button('Generat text')
    context = torch.zeros((1, 1), dtype=torch.long, device='cuda')
    text = model.generate(context, max_new_tokens=slider_value)[0].tolist()
    st.json(decode(text))
#