Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch # we use PyTorch: https://pytorch.org | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# model hyperparameters | |
batch_size = 32 | |
block_size = 128 | |
max_iters = 5000 | |
eval_interval = 500 | |
learning_rate = 3e-4 | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
eval_iters = 200 | |
n_embed = 256 | |
n_heads = 8 | |
n_layers = 6 | |
dropout = 0.2 | |
# ------------------------------------------------- | |
# model architecture | |
class AttentionHead(nn.Module): | |
"""a single head of self attention""" | |
def __init__(self, head_size): | |
super().__init__() | |
self.key = nn.Linear(n_embed, head_size, bias=False) | |
self.query = nn.Linear(n_embed, head_size, bias=False) | |
self.value = nn.Linear(n_embed, head_size, bias=False) | |
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
B, T, C = x.shape | |
K = self.key(x) # (B, T, C) | |
Q = self.query(x) # (B, T, C) | |
wei = Q @ K.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, H, C) -> (B, T, T) | |
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) | |
wei = F.softmax(wei, dim=-1) | |
wei = self.dropout(wei) | |
V = self.value(x) # (B, T, C) | |
out = wei @ V # (B, T, T) @ (B, T, C) -> (B, T, C) | |
return out | |
class MultiHeadAttention(nn.Module): | |
"""a multi-head self attention layer""" | |
def __init__(self, n_heads, head_size): | |
super().__init__() | |
self.heads = nn.ModuleList([AttentionHead(head_size) for _ in range(n_heads)]) | |
self.fc = nn.Linear(head_size * n_heads, n_embed) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
out = torch.cat([h(x) for h in self.heads], dim=-1) # (B, T, n_heads*C) | |
out = self.fc(out) # (B, T, C) | |
out = self.dropout(out) | |
return out | |
class FeedForward(nn.Module): | |
def __init__(self, n_hidden): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embed, n_hidden), | |
nn.ReLU(), | |
nn.Linear(n_hidden, n_embed), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Block(nn.Module): | |
def __init__(self, n_embed, n_heads): | |
super().__init__() | |
self.sa_heads = MultiHeadAttention(n_heads, n_embed // n_heads) | |
self.ffwd = FeedForward(n_embed*4) | |
self.ln1 = nn.LayerNorm(n_embed) | |
self.ln2 = nn.LayerNorm(n_embed) | |
def forward(self, x): | |
x = x + self.sa_heads(self.ln1(x)) # [batch_size, block_size, n_embed] | |
x = x + self.ffwd(self.ln2(x)) # [batch_size, block_size, n_embed] | |
return x | |
class BigramModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.token_embedding_table = nn.Embedding(vocab_size, n_embed) | |
self.position_embedding_table = nn.Embedding(block_size, n_embed) | |
self.blocks = nn.Sequential(*[Block(n_embed, n_heads) for _ in range(n_layers)]) | |
self.ln_f = nn.LayerNorm(n_embed) | |
self.lm_head = nn.Linear(n_embed, vocab_size) | |
def forward(self, idx, targets=None): | |
# idx and target are both [batch_size, block_size] | |
B, T = idx.shape | |
tok_emb = self.token_embedding_table(idx) # [batch_size, block_size, n_embed] | |
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # [block_size, n_embed] | |
x = tok_emb + pos_emb # [batch_size, block_size, n_embed] | |
x = self.blocks(x) | |
x = self.ln_f(x) | |
logits = self.lm_head(x) # [batch_size, block_size, vocab_size] | |
if targets is None: | |
loss = None | |
else: | |
B, T, C = logits.shape | |
logits = logits.view(B*T, C) | |
targets = targets.view(B*T) | |
loss = F.cross_entropy(logits, targets) | |
return logits, loss | |
def generate(self, idx, max_new_tokens=100): | |
# idx is (B, T) | |
for _ in range(max_new_tokens): | |
# get the last block_size tokens | |
idx_cond = idx[:, -block_size:] # (B, T) | |
# get the predictions | |
logits, _ = self(idx_cond) | |
# focus only on the last time step | |
logits = logits[:, -1, :] # becomes (B, C) | |
# apply softmax to get probabilities | |
probs = F.softmax(logits, dim=1) # (B, C) | |
# sample from the distribution | |
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) | |
# append sampled index to the running sequence | |
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) | |
return idx | |
# ---------------------------------------------------------------- | |
# helpers | |
chars = list("\n !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz") | |
stoi = { ch:i for i,ch in enumerate(chars) } | |
itos = { i:ch for i,ch in enumerate(chars) } | |
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers | |
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string | |
# ---------------------------------------------------------------- | |
# load model | |
model = torch.load('complete-model.pt', map_location=device) | |
# inference | |
st.markdown('## This is a simple lm for generating text in Skakespeareian style') | |
st.markdown('### Generation will be slow. Please be patient :)') | |
slider_value = st.slider('Amount of text to generate', min_value=100, max_value=2000, value=200, step=5) | |
if st.button('Generate text'): | |
context = torch.zeros((1, 1), dtype=torch.long, device=device) | |
text = model.generate(context, max_new_tokens=slider_value)[0].tolist() | |
st.text(decode(text)) | |