bk_gen_ai / app.py
bryantaekim's picture
Create app.py
fb5014a
raw
history blame
1.35 kB
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = f"bryantaekim/bk_text_to_ad"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
load_in_8bit=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def make_inference(product_name, product_description):
batch = tokenizer(
f"### Product and Description:\n{product_name}: {product_description}\n\n### Ad:",
return_tensors="pt",
)
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=50)
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
if __name__ == "__main__":
# make a gradio interface
import gradio as gr
gr.Interface(
make_inference,
[
gr.inputs.Textbox(lines=2, label="Product Name"),
gr.inputs.Textbox(lines=5, label="Product Description"),
],
gr.outputs.Textbox(label="Ad"),
title="GenerAd-AI",
description="GenerAd-AI is a generative model that generates ads for products.",
).launch()