import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"bryantaekim/bk_text_to_ad" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, load_in_8bit=True, # load_in_8bit_fp32_cpu_offload=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def make_inference(product_name, product_description): batch = tokenizer( f"### Product and Description:\n{product_name}: {product_description}\n\n### Ad:", return_tensors="pt", ) with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) if __name__ == "__main__": # make a gradio interface import gradio as gr gr.Interface( make_inference, [ gr.inputs.Textbox(lines=2, label="Product Name"), gr.inputs.Textbox(lines=5, label="Product Description"), ], gr.outputs.Textbox(label="Ad"), title="GenerAd-AI", description="GenerAd-AI is a generative model that generates ads for products.", ).launch()