File size: 7,633 Bytes
2267bab
073d6c4
 
 
 
 
 
 
 
 
26f3de7
073d6c4
daf9947
 
ae32874
073d6c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5cbf8
0200702
1a5cbf8
0200702
90be898
 
 
cebab9c
 
 
 
90be898
 
 
 
 
e2eb3ac
 
 
 
4a90510
073d6c4
 
 
 
 
 
 
 
0c7d1d7
073d6c4
 
 
 
 
 
 
 
 
 
 
 
4a90510
073d6c4
26f3de7
073d6c4
 
4a90510
073d6c4
26f3de7
073d6c4
 
3c9cecb
073d6c4
 
 
 
 
72a8028
f4634ef
073d6c4
 
4a90510
073d6c4
 
 
 
 
 
26f3de7
073d6c4
 
4a90510
073d6c4
 
 
 
 
 
 
 
26f3de7
073d6c4
 
 
 
 
 
4a90510
073d6c4
 
 
 
 
 
26f3de7
073d6c4
 
db5c6e9
073d6c4
 
016eaa7
073d6c4
77388e2
 
 
 
 
 
 
b3a9e72
073d6c4
 
 
 
 
 
 
 
09e6a76
39fe6d2
8529465
 
073d6c4
 
 
86a168e
e2679ed
86a168e
ff1aae4
db5c6e9
 
e2679ed
d44a87e
e2679ed
d44a87e
e2679ed
 
923cc49
073d6c4
 
1812acf
51df0df
 
9d6cba0
51df0df
 
 
 
 
 
 
 
 
 
 
 
4dddc52
4a90510
51df0df
 
 
 
 
 
4a90510
 
9d6cba0
33f6bea
4a90510
 
 
 
 
 
 
26f3de7
4a90510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import gradio as gr
import pandas as pd
import yfinance as yf

import json, openai, os, time

from datetime import date
from openai import OpenAI
from tavily import TavilyClient
from typing import List
from utils import function_to_schema, get_json

openai_client, assistant, thread = None, None, None

tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API_KEY"))

assistant_id = "asst_DbCpNsJ0vHSSdl6ePlkKZ8wG"

def today_tool() -> str:
    """Returns today's date. Use this function for any questions related to knowing today's date. 
       There should be no input. This function always returns today's date."""
    return str(date.today())

def yf_download_tool(tickers: List[str], start_date: date, end_date: date) -> pd.DataFrame:
    """Returns historical stock data for a list of given tickers from start date to end date 
       using the yfinance library download function. 
       Use this function for any questions related to getting historical stock data. 
       The input should be the tickers as a List of strings, a start date, and an end date. 
       This function always returns a pandas DataFrame."""
    return yf.download(tickers, start=start_date, end=end_date)

def tavily_search_tool(query: str) -> str:
    """Searches the web for a given query and returns an answer, "
       ready for use as context in a RAG application, using the Tavily API. 
       Use this function for any questions requiring knowledge not available to the model. 
       The input should be the query string. This function always returns an answer string."""
    return tavily_client.get_search_context(query=query, max_results=5)

tools = {
    "today_tool": today_tool,
    "yf_download_tool": yf_download_tool,
    "tavily_search_tool": tavily_search_tool,
}

def set_openai_client():
    global openai_client
    openai_client = OpenAI()

def set_assistant(a):
    global assistant
    assistant = a

def get_assistant():
    global assistant
    return assistant
    
def set_thread(t):
    global thread
    thread = t

def get_thread():
    global thread
    return thread

def create_assistant():
    assistant = openai_client.beta.assistants.create(
        name="Python Coding Assistant",
        instructions=(
             "You are a Python programming language expert that "
             "generates Pylint-compliant code and explains it. "
             "Execute code when explicitly asked to."
        ),
        model="gpt-4o",
        temperature=0.01,
        tools=[
            {"type": "code_interpreter"},
            {"type": "function", "function": function_to_schema(today_tool)},
            {"type": "function", "function": function_to_schema(yf_download_tool)},
            {"type": "function", "function": function_to_schema(tavily_search_tool)},
        ],
    )
    
    show_json("assistant", assistant)
    
    return assistant

def load_assistant():   
    assistant = openai_client.beta.assistants.retrieve(assistant_id)
    print(get_json("assistant", assistant))
    return assistant

def create_thread():
    thread = openai_client.beta.threads.create()
    print(get_json("thread", thread))
    return thread

def create_message(thread, msg):
    message = openai_client.beta.threads.messages.create(
        role="user",
        thread_id=thread.id,
        content=msg,
    )

    print(get_json("message", message))
    return message

def create_run(assistant, thread):
    run = openai_client.beta.threads.runs.create(
        assistant_id=assistant.id,
        thread_id=thread.id,
        parallel_tool_calls=False,
    )
    
    print(get_json("run", run))
    return run

def wait_on_run(thread, run):
    while run.status == "queued" or run.status == "in_progress":
        run = openai_client.beta.threads.runs.retrieve(
            thread_id=thread.id,
            run_id=run.id,
        )
            
        time.sleep(1)
    
    print(get_json("run", run))

    if hasattr(run, "last_error") and run.last_error:
        raise gr.Error(run.last_error)

    return run

def get_run_steps(thread, run):
    run_steps = openai_client.beta.threads.runs.steps.list(
        thread_id=thread.id,
        run_id=run.id,
        order="asc",
    )

    print(get_json("run_steps", run_steps))
    return run_steps

def execute_tool_call(step, tool_call):
    name = tool_call.function.name
    args = {}
    
    if len(tool_call.function.arguments) > 10:
        args_json = ""

        try:
            args_json = tool_call.function.arguments
            args = json.loads(args_json)
        except json.JSONDecodeError as e:
            print(f"Error parsing function name '{name}' function args '{args_json}': {e}")
    
    return tools[name](**args)

def execute_tool_calls(run_steps):
    tool_call_ids = []
    tool_call_results = []
    
    for step in run_steps.data:
        step_details = step.step_details
        print(get_json("step_details", step_details))

        if step.usage:
            gr.Info(f"Step: {step_details.type}, {get_json('usage', step.usage)}", duration=30)
        
        if hasattr(step_details, "tool_calls"):
            for tool_call in step_details.tool_calls:
                print(get_json("tool_call", tool_call))
              
                if hasattr(tool_call, "function"):
                    tool_call_ids.append(tool_call.id)
                    tool_call_results.append(execute_tool_call(step, tool_call))

                    if tool_call.function.output:
                        gr.Info(f"Execute function call: {tool_call.function.name}, args: {tool_call.function.arguments}", duration=30)
                    else:
                        gr.Info(f"Generate function call: {tool_call.function.name}, args: {tool_call.function.arguments}", duration=30)
                else:
                    gr.Info(f"Tool: {tool_call.type}", duration=30)
                
    return tool_call_ids, tool_call_results

def recurse_execute_tool_calls(thread, run, run_steps, iteration):
    tool_call_ids, tool_call_results = execute_tool_calls(run_steps)
    
    if len(tool_call_ids) > iteration:
        tool_output = {}
        
        try:
            tool_output = {
                "tool_call_id": tool_call_ids[iteration],
                "output": tool_call_results[iteration].to_json()
            }
        except AttributeError:
            tool_output = {
                "tool_call_id": tool_call_ids[iteration],
                "output": tool_call_results[iteration]
            }
   
        # https://platform.openai.com/docs/api-reference/runs/submitToolOutputs
        run = openai_client.beta.threads.runs.submit_tool_outputs(
            thread_id=thread.id,
            run_id=run.id,
            tool_outputs=[tool_output]
        )
    
        run = wait_on_run(thread, run)
        run_steps = get_run_steps(thread, run)
        recurse_execute_tool_calls(thread, run, run_steps, iteration + 1)
    else:
        return

def get_messages(thread):
    messages = openai_client.beta.threads.messages.list(
        thread_id=thread.id
    )
    
    print(get_json("messages", messages))
    return messages
                        
def extract_content_values(data):
    text_values, image_values = [], []
    
    for item in data.data:
        for content in item.content:
            if content.type == "text":
                text_value = content.text.value
                text_values.append(text_value)
            if content.type == "image_file":
                image_value = content.image_file.file_id
                image_values.append(image_value)
    
    return text_values, image_values