# TODO: # # 1. Gradio session / multi-user thread # 2. Function calling - https://platform.openai.com/docs/assistants/tools/function-calling # - get_stock_price - yfinance # Reference: # # https://vimeo.com/990334325/56b552bc7a # https://platform.openai.com/playground/assistants # https://cookbook.openai.com/examples/assistants_api_overview_python # https://platform.openai.com/docs/api-reference/assistants/createAssistant # https://platform.openai.com/docs/assistants/tools import gradio as gr import yfinance as yf import json, openai, os, time from datetime import date from openai import OpenAI from utils import function_to_schema, show_json client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) assistant, thread = None, None def today_tool(text: str) -> str: """Returns today's date. Use this function for any questions related to knowing today's date. There is no input. This function always returns today's date.""" return str(date.today()) def yfinance_download_tool(tickers: List[str], start: date, end: date) -> DataFrame: """Returns stock data for given tickers from a start date to an end date using yfinance download. Use this function for any questions related to getting stock data. The input should be the tickers as a list of strings, a start date, and an end date. This function always returns a Pandas DataFrame.""" return yf.download(tickers, start=start_date, end=end_date) tools = { "today_tool": today_tool, "yf_download_tool": yf_download_tool, } def create_assistant(client): assistant = client.beta.assistants.create( name="Python Code Generator", instructions=( "You are a Python programming language expert that " "generates Pylint-compliant code and explains it. " "Execute code when explicitly asked to." ), model="gpt-4o", tools=[ {"type": "code_interpreter"}, {"type": "function", "function": function_to_schema(today_tool)}, {"type": "function", "function": function_to_schema(yf_download_tool)}, ], ) #show_json("assistant", assistant) return assistant def load_assistant(client): ASSISTANT_ID = "asst_TpZgBd2QYaxUxCwUy8J9m3Bq" assistant = client.beta.assistants.retrieve(ASSISTANT_ID) #show_json("assistant", assistant) return assistant def create_thread(client): thread = client.beta.threads.create() #show_json("thread", thread) return thread def create_message(client, thread, msg): message = client.beta.threads.messages.create( role="user", thread_id=thread.id, content=msg, ) #show_json("message", message) return message def create_run(client, assistant, thread): run = client.beta.threads.runs.create( assistant_id=assistant.id, thread_id=thread.id, ) #show_json("run", run) return run def wait_on_run(client, thread, run): while run.status == "queued" or run.status == "in_progress": print("### " + run.status) run = client.beta.threads.runs.retrieve( thread_id=thread.id, run_id=run.id, ) time.sleep(0.5) #show_json("run", run) return run def get_run_steps(client, thread, run): run_steps = client.beta.threads.runs.steps.list( thread_id=thread.id, run_id=run.id, order="asc", ) #show_json("run_steps", run_steps) return run_steps def execute_tool_call(tool_call): name = tool_call.function.name args = json.loads(tool_call.function.arguments) return tools[name](**args) def execute_tool_calls(run_steps): run_step_details = [] tool_call_id = "" tool_call_result = "" for step in run_steps.data: step_details = step.step_details run_step_details.append(step_details) show_json("step_details", step_details) if hasattr(step_details, "tool_calls"): for tool_call in step_details.tool_calls: show_json("tool_call", tool_call) if hasattr(tool_call, "function"): tool_call_id = tool_call.id tool_call_result = execute_tool_call(tool_call) return tool_call_id, tool_call_result def get_messages(client, thread): messages = client.beta.threads.messages.list( thread_id=thread.id ) #show_json("messages", messages) return messages def extract_content_values(data): text_values, image_values = [], [] for item in data.data: for content in item.content: if content.type == "text": text_value = content.text.value text_values.append(text_value) if content.type == "image_file": image_value = content.image_file.file_id image_values.append(image_value) return text_values, image_values def chat(message, history): if not message: raise gr.Error("Message is required.") global client, assistant, thread if assistant == None: assistant = create_assistant(client) if thread == None or len(history) == 0: thread = create_thread(client) create_message(client, thread, message) run = create_run(client, assistant, thread) run = wait_on_run(client, thread, run) run_steps = get_run_steps(client, thread, run) tool_call_id, tool_call_result = execute_tool_calls(run_steps) ### TODO if tool_call_result: print("### tool_call_id=" + tool_call_id) print("### tool_call_result=" + tool_call_result) # https://platform.openai.com/docs/api-reference/runs/submitToolOutputs run = client.beta.threads.runs.submit_tool_outputs( thread_id=thread.id, run_id=run.id, tool_outputs=[ { "tool_call_id": tool_call_id, "output": tool_call_result } ] ) run = wait_on_run(client, thread, run) run_steps = get_run_steps(client, thread, run) tool_call_id, tool_call_result = execute_tool_calls(run_steps) ### if tool_call_result: print("### tool_call_id=" + tool_call_id) print("### tool_call_result=" + tool_call_result) # https://platform.openai.com/docs/api-reference/runs/submitToolOutputs run = client.beta.threads.runs.submit_tool_outputs( thread_id=thread.id, run_id=run.id, tool_outputs=[ { "tool_call_id": tool_call_id, "output": tool_call_result } ] ) run = wait_on_run(client, thread, run) run_steps = get_run_steps(client, thread, run) tool_call_id, tool_call_result = execute_tool_calls(run_steps) ### messages = get_messages(client, thread) text_values, image_values = extract_content_values(messages) download_link = "" if len(image_values) > 0: download_link = f"

Download: https://platform.openai.com/storage/files/{image_values[0]}

" return f"{text_values[0]}{download_link}" gr.ChatInterface( fn=chat, chatbot=gr.Chatbot(height=350), textbox=gr.Textbox(placeholder="Ask anything", container=False, scale=7), title="Python Code Generator", description="The assistant can generate, explain, fix, optimize, document, and test code. It can also execute code.", clear_btn="Clear", retry_btn=None, undo_btn=None, examples=[ ["Generate: Python code to fine-tune model meta-llama/Meta-Llama-3.1-8B on dataset gretelai/synthetic_text_to_sql using QLoRA"], ["Explain: r\"^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$\""], ["Fix: x = [5, 2, 1, 3, 4]; print(x.sort())"], ["Optimize: x = []; for i in range(0, 10000): x.append(i)"], ["Execute: First 25 Fibbonaci numbers"], ["Get today's date, then generate a chart using mock data, showing stock gain YTD for NVDA, MSFT, AAPL, and GOOG, x-axis is 'Day' and y-axis is 'YTD Gain %'"] ], cache_examples=False, ).launch()