Eye_Tracking_Drift_Correction / loss_functions.py
hugpv's picture
initial commit via hf
8e5930e verified
import torch as t
def macro_soft_f1(real_vals, predictions, reduction):
"""from https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d"""
true_positive = (real_vals * predictions).sum(dim=0)
false_positive = (predictions * (1 - real_vals)).sum(dim=0)
false_negative = ((1 - predictions) * real_vals).sum(dim=0)
soft_f1 = 2 * true_positive / (2 * true_positive + false_negative + false_positive + 1e-16)
if reduction == "mean":
loss = t.mean(1 - soft_f1)
else:
loss = 1 - soft_f1
return loss
def coral_loss(logits, levels, importance_weights=None, reduction="mean"):
"""Computes the CORAL loss described in
Cao, Mirjalili, and Raschka (2020)
*Rank Consistent Ordinal Regression for Neural Networks
with Application to Age Estimation*
Pattern Recognition Letters, https://doi.org/10.1016/j.patrec.2020.11.008
Parameters
----------
logits : torch.tensor, shape(num_examples, num_classes-1)
Outputs of the CORAL layer.
levels : torch.tensor, shape(num_examples, num_classes-1)
True labels represented as extended binary vectors
(via `coral_pytorch.dataset.levels_from_labelbatch`).
importance_weights : torch.tensor, shape=(num_classes-1,) (default=None)
Optional weights for the different labels in levels.
A tensor of ones, i.e.,
`torch.ones(num_classes-1, dtype=torch.float32)`
will result in uniform weights that have the same effect as None.
reduction : str or None (default='mean')
If 'mean' or 'sum', returns the averaged or summed loss value across
all data points (rows) in logits. If None, returns a vector of
shape (num_examples,)
Returns
----------
loss : torch.tensor
A torch.tensor containing a single loss value (if `reduction='mean'` or '`sum'`)
or a loss value for each data record (if `reduction=None`).
Examples
----------
>>> import torch
>>> from coral_pytorch.losses import coral_loss
>>> levels = torch.tensor(
... [[1., 1., 0., 0.],
... [1., 0., 0., 0.],
... [1., 1., 1., 1.]])
>>> logits = torch.tensor(
... [[2.1, 1.8, -2.1, -1.8],
... [1.9, -1., -1.5, -1.3],
... [1.9, 1.8, 1.7, 1.6]])
>>> coral_loss(logits, levels)
tensor(0.6920)
https://github.com/Raschka-research-group/coral-pytorch/blob/c6ab93afd555a6eac708c95ae1feafa15f91c5aa/coral_pytorch/losses.py
"""
if not logits.shape == levels.shape:
raise ValueError(
"Please ensure that logits (%s) has the same shape as levels (%s). " % (logits.shape, levels.shape)
)
term1 = t.nn.functional.logsigmoid(logits) * levels + (t.nn.functional.logsigmoid(logits) - logits) * (1 - levels)
if importance_weights is not None:
term1 *= importance_weights
val = -t.sum(term1, dim=1)
if reduction == "mean":
loss = t.mean(val)
elif reduction == "sum":
loss = t.sum(val)
elif reduction is None:
loss = val
else:
s = 'Invalid value for `reduction`. Should be "mean", ' '"sum", or None. Got %s' % reduction
raise ValueError(s)
return loss
def corn_loss(logits, y_train, num_classes):
"""Computes the CORN loss described in our forthcoming
'Deep Neural Networks for Rank Consistent Ordinal
Regression based on Conditional Probabilities'
manuscript.
Parameters
----------
logits : torch.tensor, shape=(num_examples, num_classes-1)
Outputs of the CORN layer.
y_train : torch.tensor, shape=(num_examples)
Torch tensor containing the class labels.
num_classes : int
Number of unique class labels (class labels should start at 0).
Returns
----------
loss : torch.tensor
A torch.tensor containing a single loss value.
Examples
----------
>>> import torch
>>> from coral_pytorch.losses import corn_loss
>>> # Consider 8 training examples
>>> _ = torch.manual_seed(123)
>>> X_train = torch.rand(8, 99)
>>> y_train = torch.tensor([0, 1, 2, 2, 2, 3, 4, 4])
>>> NUM_CLASSES = 5
>>> #
>>> #
>>> # def __init__(self):
>>> corn_net = torch.nn.Linear(99, NUM_CLASSES-1)
>>> #
>>> #
>>> # def forward(self, X_train):
>>> logits = corn_net(X_train)
>>> logits.shape
torch.Size([8, 4])
>>> corn_loss(logits, y_train, NUM_CLASSES)
tensor(0.7127, grad_fn=<DivBackward0>)
https://github.com/Raschka-research-group/coral-pytorch/blob/c6ab93afd555a6eac708c95ae1feafa15f91c5aa/coral_pytorch/losses.py
"""
sets = []
for i in range(num_classes - 1):
label_mask = y_train > i - 1
label_tensor = (y_train[label_mask] > i).to(t.int64)
sets.append((label_mask, label_tensor))
num_examples = 0
losses = 0.0
for task_index, s in enumerate(sets):
train_examples = s[0]
train_labels = s[1]
if len(train_labels) < 1:
continue
num_examples += len(train_labels)
pred = logits[train_examples, task_index]
loss = -t.sum(
t.nn.functional.logsigmoid(pred) * train_labels
+ (t.nn.functional.logsigmoid(pred) - pred) * (1 - train_labels)
)
losses += loss
return losses / num_examples
def corn_label_from_logits(logits):
"""
Returns the predicted rank label from logits for a
network trained via the CORN loss.
Parameters
----------
logits : torch.tensor, shape=(n_examples, n_classes)
Torch tensor consisting of logits returned by the
neural net.
Returns
----------
labels : torch.tensor, shape=(n_examples)
Integer tensor containing the predicted rank (class) labels
Examples
----------
>>> # 2 training examples, 5 classes
>>> logits = torch.tensor([[14.152, -6.1942, 0.47710, 0.96850],
... [65.667, 0.303, 11.500, -4.524]])
>>> corn_label_from_logits(logits)
tensor([1, 3])
https://github.com/Raschka-research-group/coral-pytorch/blob/c6ab93afd555a6eac708c95ae1feafa15f91c5aa/coral_pytorch/dataset.py
"""
probas = t.sigmoid(logits)
probas = t.cumprod(probas, dim=1)
predict_levels = probas > 0.5
predicted_labels = t.sum(predict_levels, dim=1)
return predicted_labels