File size: 39,422 Bytes
da572bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
import timm
import os
from typing import Any
from pytorch_lightning.utilities.types import LRSchedulerTypeUnion
import torch as t
from torch import nn
import transformers
import pytorch_lightning as plight
import torchmetrics
import einops as eo
from loss_functions import corn_loss, corn_label_from_logits
t.set_float32_matmul_precision("medium")
global_settings = dict(try_using_torch_compile=False)
class EnsembleModel(plight.LightningModule):
def __init__(self, models_without_norm_df, models_with_norm_df, learning_rate=0.0002, use_simple_average=False):
super().__init__()
self.models_without_norm = nn.ModuleList(list(models_without_norm_df))
self.models_with_norm = nn.ModuleList(list(models_with_norm_df))
self.learning_rate = learning_rate
self.use_simple_average = use_simple_average
if not self.use_simple_average:
self.combiner = nn.Linear(
self.models_with_norm[0].num_classes * (len(self.models_with_norm) + len(self.models_without_norm)),
self.models_with_norm[0].num_classes,
)
def forward(self, x):
x_unnormed, x_normed = x
if not self.use_simple_average:
out_unnormed = t.cat([model.model_step(x_unnormed, 0)[0] for model in self.models_without_norm], dim=-1)
out_normed = t.cat([model.model_step(x_normed, 0)[0] for model in self.models_with_norm], dim=-1)
out_avg = self.combiner(t.cat((out_unnormed, out_normed), dim=-1))
else:
out_unnormed = [model.model_step(x_unnormed, 0)[0] for model in self.models_without_norm]
out_normed = [model.model_step(x_normed, 0)[0] for model in self.models_with_norm]
out_avg = (t.stack(out_unnormed + out_normed, dim=-1) / 2).mean(-1)
return {"out_avg": out_avg, "out_unnormed": out_unnormed, "out_normed": out_normed}, x_unnormed[-1]
def training_step(self, batch, batch_idx):
out, y = self(batch)
loss = self.models_with_norm[0]._get_loss(out["out_avg"], y, batch[0])
self.log("train_loss", loss, on_epoch=True, on_step=True, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx):
out, y = self(batch)
preds, y_onecold, ignore_index_val = self.models_with_norm[0]._get_preds_reals(out["out_avg"], y)
acc = torchmetrics.functional.accuracy(
preds,
y_onecold.to(t.long),
ignore_index=ignore_index_val,
num_classes=self.models_with_norm[0].num_classes,
task="multiclass",
)
self.log("acc", acc * 100, prog_bar=True, sync_dist=True)
loss = self.models_with_norm[0]._get_loss(out["out_avg"], y, batch[0])
self.log("val_loss", loss, prog_bar=True, sync_dist=True)
return loss
def predict_step(self, batch, batch_idx: int, dataloader_idx: int = 0):
out, y = self(batch)
preds, y_onecold, ignore_index_val = self.models_with_norm[0]._get_preds_reals(out["out_avg"], y)
return preds, out, y_onecold
def configure_optimizers(self):
return t.optim.Adam(self.parameters(), lr=self.learning_rate)
class TimmHeadReplace(nn.Module):
def __init__(self, pooling=None, in_channels=512, pooling_output_dimension=1, all_identity=False) -> None:
super().__init__()
if all_identity:
self.head = nn.Identity()
self.pooling = None
else:
self.pooling = pooling
if pooling is not None:
self.pooling_output_dimension = pooling_output_dimension
if self.pooling == "AdaptiveAvgPool2d":
self.pooling_layer = nn.AdaptiveAvgPool2d(pooling_output_dimension)
elif self.pooling == "AdaptiveMaxPool2d":
self.pooling_layer = nn.AdaptiveMaxPool2d(pooling_output_dimension)
self.head = nn.Flatten()
def forward(self, x, pre_logits=False):
if self.pooling is not None:
if self.pooling == "stack_avg_max_attn":
x = t.cat([layer(x) for layer in self.pooling_layer], dim=-1)
else:
x = self.pooling_layer(x)
return self.head(x)
class CVModel(nn.Module):
def __init__(
self,
modelname,
in_shape,
num_classes,
loss_func,
last_activation: str,
input_padding_val=10,
char_dims=2,
max_seq_length=1000,
) -> None:
super().__init__()
self.modelname = modelname
self.loss_func = loss_func
self.in_shape = in_shape
self.char_dims = char_dims
self.x_shape = in_shape
self.last_activation = last_activation
self.max_seq_length = max_seq_length
self.num_classes = num_classes
if self.loss_func == "OrdinalRegLoss":
self.out_shape = 1
else:
self.out_shape = num_classes
self.cv_model = timm.create_model(modelname, pretrained=True, num_classes=0)
self.cv_model.classifier = nn.Identity()
with t.inference_mode():
test_out = self.cv_model(t.ones(self.in_shape, dtype=t.float32))
self.cv_model_out_dim = test_out.shape[1]
self.cv_model.classifier = nn.Sequential(nn.Flatten(), nn.Linear(self.cv_model_out_dim, self.max_seq_length))
if self.out_shape == 1:
self.logit_norm = nn.Identity()
self.out_project = nn.Identity()
else:
self.logit_norm = nn.LayerNorm(self.max_seq_length)
self.out_project = nn.Linear(1, self.out_shape)
if last_activation == "Softmax":
self.final_activation = nn.Softmax(dim=-1)
elif last_activation == "Sigmoid":
self.final_activation = nn.Sigmoid()
elif last_activation == "LogSigmoid":
self.final_activation = nn.LogSigmoid()
elif last_activation == "Identity":
self.final_activation = nn.Identity()
else:
raise NotImplementedError(f"{last_activation} not implemented")
def forward(self, x):
if isinstance(x, list):
x = x[0]
x = self.cv_model(x)
x = self.cv_model.classifier(x).unsqueeze(-1)
x = self.out_project(x)
return self.final_activation(x)
class LitModel(plight.LightningModule):
def __init__(
self,
in_shape: tuple,
hidden_dim: int,
num_attention_heads: int,
num_layers: int,
loss_func: str,
learning_rate: float,
weight_decay: float,
cfg: dict,
use_lr_warmup: bool,
use_reduce_on_plateau: bool,
track_gradient_histogram=False,
register_forw_hook=False,
char_dims=2,
) -> None:
super().__init__()
if "only_use_2nd_input_stream" not in cfg:
cfg["only_use_2nd_input_stream"] = False
if "gamma_step_size" not in cfg:
cfg["gamma_step_size"] = 5
if "gamma_step_factor" not in cfg:
cfg["gamma_step_factor"] = 0.5
self.save_hyperparameters(
dict(
in_shape=in_shape,
hidden_dim=hidden_dim,
num_attention_heads=num_attention_heads,
num_layers=num_layers,
loss_func=loss_func,
learning_rate=learning_rate,
cfg=cfg,
x_shape=in_shape,
num_classes=cfg["num_classes"],
use_lr_warmup=use_lr_warmup,
num_warmup_steps=cfg["num_warmup_steps"],
use_reduce_on_plateau=use_reduce_on_plateau,
weight_decay=weight_decay,
track_gradient_histogram=track_gradient_histogram,
register_forw_hook=register_forw_hook,
char_dims=char_dims,
remove_timm_classifier_head_pooling=cfg["remove_timm_classifier_head_pooling"],
change_pooling_for_timm_head_to=cfg["change_pooling_for_timm_head_to"],
chars_conv_pooling_out_dim=cfg["chars_conv_pooling_out_dim"],
)
)
self.model_to_use = cfg["model_to_use"]
self.num_classes = cfg["num_classes"]
self.x_shape = in_shape
self.in_shape = in_shape
self.hidden_dim = hidden_dim
self.num_attention_heads = num_attention_heads
self.num_layers = num_layers
self.use_lr_warmup = use_lr_warmup
self.num_warmup_steps = cfg["num_warmup_steps"]
self.warmup_exponent = cfg["warmup_exponent"]
self.use_reduce_on_plateau = use_reduce_on_plateau
self.loss_func = loss_func
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.using_one_hot_targets = cfg["one_hot_y"]
self.track_gradient_histogram = track_gradient_histogram
self.register_forw_hook = register_forw_hook
if self.loss_func == "OrdinalRegLoss":
self.ord_reg_loss_max = cfg["ord_reg_loss_max"]
self.ord_reg_loss_min = cfg["ord_reg_loss_min"]
self.num_lin_layers = cfg["num_lin_layers"]
self.linear_activation = cfg["linear_activation"]
self.last_activation = cfg["last_activation"]
self.max_seq_length = cfg["manual_max_sequence_for_model"]
self.use_char_embed_info = cfg["use_embedded_char_pos_info"]
self.method_chars_into_model = cfg["method_chars_into_model"]
self.source_for_pretrained_cv_model = cfg["source_for_pretrained_cv_model"]
self.method_to_include_char_positions = cfg["method_to_include_char_positions"]
self.char_dims = char_dims
self.char_sequence_length = cfg["max_len_chars_list"] if self.use_char_embed_info else 0
self.chars_conv_lr_reduction_factor = cfg["chars_conv_lr_reduction_factor"]
if self.use_char_embed_info:
self.chars_bert_reduction_factor = cfg["chars_bert_reduction_factor"]
self.use_in_projection_bias = cfg["use_in_projection_bias"]
self.add_layer_norm_to_in_projection = cfg["add_layer_norm_to_in_projection"]
self.hidden_dropout_prob = cfg["hidden_dropout_prob"]
self.layer_norm_after_in_projection = cfg["layer_norm_after_in_projection"]
self.method_chars_into_model = cfg["method_chars_into_model"]
self.input_padding_val = cfg["input_padding_val"]
self.cv_char_modelname = cfg["cv_char_modelname"]
self.char_plot_shape = cfg["char_plot_shape"]
self.remove_timm_classifier_head_pooling = cfg["remove_timm_classifier_head_pooling"]
self.change_pooling_for_timm_head_to = cfg["change_pooling_for_timm_head_to"]
self.chars_conv_pooling_out_dim = cfg["chars_conv_pooling_out_dim"]
self.add_layer_norm_to_char_mlp = cfg["add_layer_norm_to_char_mlp"]
if "profile_torch_run" in cfg:
self.profile_torch_run = cfg["profile_torch_run"]
else:
self.profile_torch_run = False
if self.loss_func == "OrdinalRegLoss":
self.out_shape = 1
else:
self.out_shape = cfg["num_classes"]
if not self.hparams.cfg["only_use_2nd_input_stream"]:
if (
self.method_chars_into_model == "dense"
and self.use_char_embed_info
and self.method_to_include_char_positions == "concat"
):
self.project = nn.Linear(self.x_shape[-1], self.hidden_dim // 2, bias=self.use_in_projection_bias)
elif (
self.method_chars_into_model == "bert"
and self.use_char_embed_info
and self.method_to_include_char_positions == "concat"
):
self.hidden_dim_chars = self.hidden_dim // 2
self.project = nn.Linear(self.x_shape[-1], self.hidden_dim_chars, bias=self.use_in_projection_bias)
elif (
self.method_chars_into_model == "resnet"
and self.method_to_include_char_positions == "concat"
and self.use_char_embed_info
):
self.project = nn.Linear(self.x_shape[-1], self.hidden_dim // 2, bias=self.use_in_projection_bias)
elif self.model_to_use == "cv_only_model":
self.project = nn.Identity()
else:
self.project = nn.Linear(self.x_shape[-1], self.hidden_dim, bias=self.use_in_projection_bias)
if self.add_layer_norm_to_in_projection:
self.project = nn.Sequential(
nn.Linear(self.project.in_features, self.project.out_features, bias=self.use_in_projection_bias),
nn.LayerNorm(self.project.out_features),
)
if hasattr(self, "project") and "posix" in os.name and global_settings["try_using_torch_compile"]:
self.project = t.compile(self.project)
if self.use_char_embed_info:
self._create_char_model()
if self.layer_norm_after_in_projection:
if self.hparams.cfg["only_use_2nd_input_stream"]:
self.layer_norm_in = nn.LayerNorm(self.hidden_dim // 2)
else:
self.layer_norm_in = nn.LayerNorm(self.hidden_dim)
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.layer_norm_in = t.compile(self.layer_norm_in)
self._create_main_seq_model(cfg)
if register_forw_hook:
self.register_hooks()
if self.hparams.cfg["only_use_2nd_input_stream"]:
linear_in_dim = self.hidden_dim // 2
else:
linear_in_dim = self.hidden_dim
if self.num_lin_layers == 1:
self.linear = nn.Linear(linear_in_dim, self.out_shape)
else:
lin_layers = []
for _ in range(self.num_lin_layers - 1):
lin_layers.extend(
[
nn.Linear(linear_in_dim, linear_in_dim),
getattr(nn, self.linear_activation)(),
]
)
self.linear = nn.Sequential(*lin_layers, nn.Linear(linear_in_dim, self.out_shape))
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.linear = t.compile(self.linear)
if self.last_activation == "Softmax":
self.final_activation = nn.Softmax(dim=-1)
elif self.last_activation == "Sigmoid":
self.final_activation = nn.Sigmoid()
elif self.last_activation == "Identity":
self.final_activation = nn.Identity()
else:
raise NotImplementedError(f"{self.last_activation} not implemented")
if self.profile_torch_run:
self.profilerr = t.profiler.profile(
schedule=t.profiler.schedule(wait=1, warmup=10, active=10, repeat=1),
on_trace_ready=t.profiler.tensorboard_trace_handler("tblogs"),
with_stack=True,
record_shapes=True,
profile_memory=False,
)
def _create_main_seq_model(self, cfg):
if self.hparams.cfg["only_use_2nd_input_stream"]:
hidden_dim = self.hidden_dim // 2
else:
hidden_dim = self.hidden_dim
if self.model_to_use == "BERT":
self.bert_config = transformers.BertConfig(
vocab_size=self.x_shape[-1],
hidden_size=hidden_dim,
num_hidden_layers=self.num_layers,
intermediate_size=hidden_dim,
num_attention_heads=self.num_attention_heads,
max_position_embeddings=self.max_seq_length,
)
self.bert_model = transformers.BertModel(self.bert_config)
elif self.model_to_use == "cv_only_model":
self.bert_model = CVModel(
modelname=cfg["cv_modelname"],
in_shape=self.in_shape,
num_classes=cfg["num_classes"],
loss_func=cfg["loss_function"],
last_activation=cfg["last_activation"],
input_padding_val=cfg["input_padding_val"],
char_dims=self.char_dims,
max_seq_length=cfg["manual_max_sequence_for_model"],
)
else:
raise NotImplementedError(f"{self.model_to_use} not implemented")
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.bert_model = t.compile(self.bert_model)
return 0
def _create_char_model(self):
if self.method_chars_into_model == "dense":
self.chars_project_0 = nn.Linear(self.char_dims, 1, bias=self.use_in_projection_bias)
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.chars_project_0 = t.compile(self.chars_project_0)
if self.method_to_include_char_positions == "concat":
self.chars_project_1 = nn.Linear(
self.char_sequence_length, self.hidden_dim // 2, bias=self.use_in_projection_bias
)
else:
self.chars_project_1 = nn.Linear(
self.char_sequence_length, self.hidden_dim, bias=self.use_in_projection_bias
)
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.chars_project_1 = t.compile(self.chars_project_1)
elif not self.method_chars_into_model == "resnet":
self.chars_project = nn.Linear(self.char_dims, self.hidden_dim_chars, bias=self.use_in_projection_bias)
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.chars_project = t.compile(self.chars_project)
if self.method_chars_into_model == "bert":
if not hasattr(self, "hidden_dim_chars"):
if self.hidden_dim // self.chars_bert_reduction_factor > 1:
self.hidden_dim_chars = self.hidden_dim // self.chars_bert_reduction_factor
else:
self.hidden_dim_chars = self.hidden_dim
self.num_attention_heads_chars = self.hidden_dim_chars // (self.hidden_dim // self.num_attention_heads)
self.chars_bert_config = transformers.BertConfig(
vocab_size=self.x_shape[-1],
hidden_size=self.hidden_dim_chars,
num_hidden_layers=self.num_layers,
intermediate_size=self.hidden_dim_chars,
num_attention_heads=self.num_attention_heads_chars,
max_position_embeddings=self.char_sequence_length + 1,
num_labels=1,
)
self.chars_bert = transformers.BertForSequenceClassification(self.chars_bert_config)
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.chars_bert = t.compile(self.chars_bert)
self.chars_project_class_output = nn.Linear(1, self.hidden_dim_chars, bias=self.use_in_projection_bias)
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.chars_project_class_output = t.compile(self.chars_project_class_output)
elif self.method_chars_into_model == "resnet":
if self.source_for_pretrained_cv_model == "timm":
self.chars_conv = timm.create_model(
self.cv_char_modelname,
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
if self.remove_timm_classifier_head_pooling:
self.chars_conv.head = TimmHeadReplace(all_identity=True)
with t.inference_mode():
test_out = self.chars_conv(
t.ones((1, 3, self.char_plot_shape[0], self.char_plot_shape[1]), dtype=t.float32)
)
if test_out.ndim > 3:
self.chars_conv.head = TimmHeadReplace(
self.change_pooling_for_timm_head_to,
test_out.shape[1],
)
elif self.source_for_pretrained_cv_model == "huggingface":
self.chars_conv = transformers.AutoModelForImageClassification.from_pretrained(self.cv_char_modelname)
elif self.source_for_pretrained_cv_model == "torch_hub":
self.chars_conv = t.hub.load(*self.cv_char_modelname.split(","))
if hasattr(self.chars_conv, "classifier"):
self.chars_conv.classifier = nn.Identity()
elif hasattr(self.chars_conv, "cls_classifier"):
self.chars_conv.cls_classifier = nn.Identity()
elif hasattr(self.chars_conv, "fc"):
self.chars_conv.fc = nn.Identity()
if hasattr(self.chars_conv, "distillation_classifier"):
self.chars_conv.distillation_classifier = nn.Identity()
with t.inference_mode():
test_out = self.chars_conv(
t.ones((1, 3, self.char_plot_shape[0], self.char_plot_shape[1]), dtype=t.float32)
)
if hasattr(test_out, "last_hidden_state"):
self.chars_conv_out_dim = test_out.last_hidden_state.shape[1]
elif hasattr(test_out, "logits"):
self.chars_conv_out_dim = test_out.logits.shape[1]
elif isinstance(test_out, list):
self.chars_conv_out_dim = test_out[0].shape[1]
else:
self.chars_conv_out_dim = test_out.shape[1]
char_lin_layers = [nn.Flatten(), nn.Linear(self.chars_conv_out_dim, self.hidden_dim // 2)]
if self.add_layer_norm_to_char_mlp:
char_lin_layers.append(nn.LayerNorm(self.hidden_dim // 2))
self.chars_classifier = nn.Sequential(*char_lin_layers)
if hasattr(self.chars_conv, "distillation_classifier"):
self.chars_conv.distillation_classifier = nn.Sequential(
nn.Flatten(), nn.Linear(self.chars_conv_out_dim, self.hidden_dim // 2)
)
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.chars_classifier = t.compile(self.chars_classifier)
if "posix" in os.name and global_settings["try_using_torch_compile"]:
self.chars_conv = t.compile(self.chars_conv)
return 0
def register_hooks(self):
def add_to_tb(layer):
def hook(model, input, output):
if hasattr(output, "detach"):
for logger in self.loggers:
if hasattr(logger.experiment, "add_histogram"):
logger.experiment.add_histogram(
tag=f"{layer}_{str(list(output.shape))}",
values=output.detach(),
global_step=self.trainer.global_step,
)
return hook
for layer_id, layer in dict([*self.named_modules()]).items():
layer.register_forward_hook(add_to_tb(f"act_{layer_id}"))
def on_after_backward(self) -> None:
if self.track_gradient_histogram:
if self.trainer.global_step % 200 == 0:
for logger in self.loggers:
if hasattr(logger.experiment, "add_histogram"):
for layer_id, layer in dict([*self.named_modules()]).items():
parameters = layer.parameters()
for idx2, p in enumerate(parameters):
grad_val = p.grad
if grad_val is not None:
grad_name = f"grad_{idx2}_{layer_id}_{str(list(p.grad.shape))}"
logger.experiment.add_histogram(
tag=grad_name, values=grad_val, global_step=self.trainer.global_step
)
return super().on_after_backward()
def _fold_in_seq_dim(self, out, y):
batch_size, seq_len, num_classes = out.shape
out = eo.rearrange(out, "b s c -> (b s) c", s=seq_len)
if y is None:
return out, None
if len(y.shape) > 2:
y = eo.rearrange(y, "b s c -> (b s) c", s=seq_len)
else:
y = eo.rearrange(y, "b s -> (b s)", s=seq_len)
return out, y
def _get_loss(self, out, y, batch):
attention_mask = batch[-2]
if self.loss_func == "BCELoss":
if self.last_activation == "Identity":
loss = t.nn.functional.binary_cross_entropy_with_logits(out, y, reduction="none")
else:
loss = t.nn.functional.binary_cross_entropy(out, y, reduction="none")
replace_tensor = t.zeros(loss[1, 1, :].shape, device=loss.device, dtype=loss.dtype, requires_grad=False)
loss[~attention_mask.bool()] = replace_tensor
loss = loss.mean()
elif self.loss_func == "CrossEntropyLoss":
if len(out.shape) > 2:
out, y = self._fold_in_seq_dim(out, y)
loss = t.nn.functional.cross_entropy(out, y, reduction="mean", ignore_index=-100)
else:
loss = t.nn.functional.cross_entropy(out, y, reduction="mean", ignore_index=-100)
elif self.loss_func == "OrdinalRegLoss":
loss = t.nn.functional.mse_loss(out, y, reduction="none")
loss = loss[attention_mask.bool()].sum() * 10.0 / attention_mask.sum()
elif self.loss_func == "corn_loss":
out, y = self._fold_in_seq_dim(out, y)
loss = corn_loss(out, y.squeeze(), self.out_shape)
else:
raise ValueError("Loss Function not reckognized")
return loss
def training_step(self, batch, batch_idx):
if self.profile_torch_run:
self.profilerr.step()
out, y = self.model_step(batch, batch_idx)
loss = self._get_loss(out, y, batch)
self.log("train_loss", loss, on_epoch=True, on_step=True, sync_dist=True)
return loss
def forward(*args):
return forward(args[0], args[1:])
def model_step(self, batch, batch_idx):
out = self.forward(batch)
return out, batch[-1]
def optimizer_step(
self,
epoch,
batch_idx,
optimizer,
optimizer_closure,
):
optimizer.step(closure=optimizer_closure)
if self.use_lr_warmup and self.hparams["cfg"]["lr_scheduling"] != "OneCycleLR":
if self.trainer.global_step < self.num_warmup_steps:
lr_scale = min(1.0, float(self.trainer.global_step + 1) / self.num_warmup_steps) ** self.warmup_exponent
for pg in optimizer.param_groups:
pg["lr"] = lr_scale * self.hparams.learning_rate
if self.trainer.global_step % 10 == 0 or self.trainer.global_step == 0:
for idx, pg in enumerate(optimizer.param_groups):
self.log(f"lr_{idx}", pg["lr"], prog_bar=True, sync_dist=True)
def lr_scheduler_step(self, scheduler: LRSchedulerTypeUnion, metric: Any | None) -> None:
if self.use_lr_warmup and self.hparams["cfg"]["lr_scheduling"] != "OneCycleLR":
if self.trainer.global_step > self.num_warmup_steps:
if metric is None:
scheduler.step()
else:
scheduler.step(metric)
else:
if metric is None:
scheduler.step()
else:
scheduler.step(metric)
def _get_preds_reals(self, out, y):
if self.loss_func == "corn_loss":
seq_len = out.shape[1]
out, y = self._fold_in_seq_dim(out, y)
preds = corn_label_from_logits(out)
preds = eo.rearrange(preds, "(b s) -> b s", s=seq_len)
if y is not None:
y = eo.rearrange(y.squeeze(), "(b s) -> b s", s=seq_len)
elif self.loss_func == "OrdinalRegLoss":
preds = out * (self.ord_reg_loss_max - self.ord_reg_loss_min)
preds = (preds + self.ord_reg_loss_min).round().to(t.long)
else:
preds = t.argmax(out, dim=-1)
if y is None:
return preds, y, -100
else:
if self.using_one_hot_targets:
y_onecold = t.argmax(y, dim=-1)
ignore_index_val = 0
elif self.loss_func == "OrdinalRegLoss":
y_onecold = (y * self.num_classes).round().to(t.long)
y_onecold = y * (self.ord_reg_loss_max - self.ord_reg_loss_min)
y_onecold = (y_onecold + self.ord_reg_loss_min).round().to(t.long)
ignore_index_val = t.min(y_onecold).to(t.long)
else:
y_onecold = y
ignore_index_val = -100
if len(preds.shape) > len(y_onecold.shape):
preds = preds.squeeze()
return preds, y_onecold, ignore_index_val
def validation_step(self, batch, batch_idx):
out, y = self.model_step(batch, batch_idx)
preds, y_onecold, ignore_index_val = self._get_preds_reals(out, y)
if self.loss_func == "OrdinalRegLoss":
y_onecold = y_onecold.flatten()
preds = preds.flatten()[y_onecold != ignore_index_val]
y_onecold = y_onecold[y_onecold != ignore_index_val]
acc = (preds == y_onecold).sum() / len(y_onecold)
else:
acc = torchmetrics.functional.accuracy(
preds,
y_onecold.to(t.long),
ignore_index=ignore_index_val,
num_classes=self.num_classes,
task="multiclass",
)
self.log("acc", acc * 100, prog_bar=True, sync_dist=True)
loss = self._get_loss(out, y, batch)
self.log("val_loss", loss, prog_bar=True, sync_dist=True)
return loss
def predict_step(self, batch, batch_idx):
out, y = self.model_step(batch, batch_idx)
preds, y_onecold, ignore_index_val = self._get_preds_reals(out, y)
return preds, y_onecold
def configure_optimizers(self):
params = list(self.named_parameters())
def is_chars_conv(n):
if "chars_conv" not in n:
return False
if "chars_conv" in n and "classifier" in n:
return False
else:
return True
grouped_parameters = [
{
"params": [p for n, p in params if is_chars_conv(n)],
"lr": self.learning_rate / self.chars_conv_lr_reduction_factor,
"weight_decay": self.weight_decay,
},
{
"params": [p for n, p in params if not is_chars_conv(n)],
"lr": self.learning_rate,
"weight_decay": self.weight_decay,
},
]
opti = t.optim.AdamW(grouped_parameters, lr=self.learning_rate, weight_decay=self.weight_decay)
if self.use_reduce_on_plateau:
opti_dict = {
"optimizer": opti,
"lr_scheduler": {
"scheduler": t.optim.lr_scheduler.ReduceLROnPlateau(opti, mode="min", patience=2, factor=0.5),
"monitor": "val_loss",
"frequency": 1,
"interval": "epoch",
},
}
return opti_dict
else:
cfg = self.hparams["cfg"]
if cfg["use_reduce_on_plateau"]:
scheduler = None
elif cfg["lr_scheduling"] == "multistep":
scheduler = t.optim.lr_scheduler.MultiStepLR(
opti, milestones=cfg["multistep_milestones"], gamma=cfg["gamma_multistep"], verbose=False
)
interval = "step" if cfg["use_training_steps_for_end_and_lr_decay"] else "epoch"
elif cfg["lr_scheduling"] == "StepLR":
scheduler = t.optim.lr_scheduler.StepLR(
opti, step_size=cfg["gamma_step_size"], gamma=cfg["gamma_step_factor"]
)
interval = "step" if cfg["use_training_steps_for_end_and_lr_decay"] else "epoch"
elif cfg["lr_scheduling"] == "anneal":
scheduler = t.optim.lr_scheduler.CosineAnnealingLR(
opti, 250, eta_min=cfg["min_lr_anneal"], last_epoch=-1, verbose=False
)
interval = "step"
elif cfg["lr_scheduling"] == "ExponentialLR":
scheduler = t.optim.lr_scheduler.ExponentialLR(opti, gamma=cfg["lr_sched_exp_fac"])
interval = "step"
else:
scheduler = None
if scheduler is None:
return [opti]
else:
opti_dict = {
"optimizer": opti,
"lr_scheduler": {
"scheduler": scheduler,
"monitor": "global_step",
"frequency": 1,
"interval": interval,
},
}
return opti_dict
def on_fit_start(self) -> None:
if self.profile_torch_run:
self.profilerr.start()
return super().on_fit_start()
def on_fit_end(self) -> None:
if self.profile_torch_run:
self.profilerr.stop()
return super().on_fit_end()
def prep_model_input(self, batch):
if len(batch) == 1:
batch = batch[0]
if self.use_char_embed_info:
if len(batch) == 5:
x, chars_coords, ims, attention_mask, _ = batch
elif batch[1].ndim == 4:
x, ims, attention_mask, _ = batch
else:
x, chars_coords, attention_mask, _ = batch
padding_list = None
else:
if len(batch) > 3:
x = batch[0]
y = batch[-1]
attention_mask = batch[1]
else:
x, attention_mask, y = batch
if self.model_to_use != "cv_only_model" and not self.hparams.cfg["only_use_2nd_input_stream"]:
x_embedded = self.project(x)
else:
x_embedded = x
if self.use_char_embed_info:
if self.method_chars_into_model == "dense":
bool_mask = chars_coords == self.input_padding_val
bool_mask = bool_mask[:, :, 0]
chars_coords_projected = self.chars_project_0(chars_coords).squeeze(-1)
chars_coords_projected = chars_coords_projected * bool_mask
if self.chars_project_1.in_features == chars_coords_projected.shape[-1]:
chars_coords_projected = self.chars_project_1(chars_coords_projected)
else:
chars_coords_projected = chars_coords_projected.mean(dim=-1)
chars_coords_projected = chars_coords_projected.unsqueeze(1).repeat(1, x_embedded.shape[2])
elif self.method_chars_into_model == "bert":
chars_mask = chars_coords != self.input_padding_val
chars_mask = t.cat(
(
t.ones(chars_mask[:, :1, 0].shape, dtype=t.long, device=chars_coords.device),
chars_mask[:, :, 0].to(t.long),
),
dim=1,
)
chars_coords_projected = self.chars_project(chars_coords)
position_ids = t.arange(
0, chars_coords_projected.shape[1] + 1, dtype=t.long, device=chars_coords_projected.device
)
token_type_ids = t.zeros(
(chars_coords_projected.size()[0], chars_coords_projected.size()[1] + 1),
dtype=t.long,
device=chars_coords_projected.device,
) # +1 for CLS
chars_coords_projected = t.cat(
(t.ones_like(chars_coords_projected[:, :1, :]), chars_coords_projected), dim=1
) # to add CLS token
chars_coords_projected = self.chars_bert(
position_ids=position_ids,
inputs_embeds=chars_coords_projected,
token_type_ids=token_type_ids,
attention_mask=chars_mask,
)
if hasattr(chars_coords_projected, "last_hidden_state"):
chars_coords_projected = chars_coords_projected.last_hidden_state[:, 0, :]
elif hasattr(chars_coords_projected, "logits"):
chars_coords_projected = chars_coords_projected.logits
else:
chars_coords_projected = chars_coords_projected.hidden_states[-1][:, 0, :]
elif self.method_chars_into_model == "resnet":
chars_conv_out = self.chars_conv(ims)
if isinstance(chars_conv_out, list):
chars_conv_out = chars_conv_out[0]
if hasattr(chars_conv_out, "logits"):
chars_conv_out = chars_conv_out.logits
chars_coords_projected = self.chars_classifier(chars_conv_out)
chars_coords_projected = chars_coords_projected.unsqueeze(1).repeat(1, x_embedded.shape[1], 1)
if hasattr(self, "chars_project_class_output"):
chars_coords_projected = self.chars_project_class_output(chars_coords_projected)
if self.hparams.cfg["only_use_2nd_input_stream"]:
x_embedded = chars_coords_projected
elif self.method_to_include_char_positions == "concat":
x_embedded = t.cat((x_embedded, chars_coords_projected), dim=-1)
else:
x_embedded = x_embedded + chars_coords_projected
return x_embedded, attention_mask
def forward(self, batch):
prepped_input = prep_model_input(self, batch)
if len(batch) > 5:
x_embedded, padding_list, attention_mask, attention_mask_for_prediction = prepped_input
elif len(batch) > 2:
x_embedded, attention_mask = prepped_input
else:
x_embedded = prepped_input[0]
attention_mask = prepped_input[-1]
position_ids = t.arange(0, x_embedded.shape[1], dtype=t.long, device=x_embedded.device)
token_type_ids = t.zeros(x_embedded.size()[:-1], dtype=t.long, device=x_embedded.device)
if self.layer_norm_after_in_projection:
x_embedded = self.layer_norm_in(x_embedded)
if self.model_to_use == "LSTM":
bert_out = self.bert_model(x_embedded)
elif self.model_to_use in ["ProphetNet", "T5", "FunnelModel"]:
bert_out = self.bert_model(inputs_embeds=x_embedded, attention_mask=attention_mask)
elif self.model_to_use == "xBERT":
bert_out = self.bert_model(x_embedded, mask=attention_mask.to(bool))
elif self.model_to_use == "cv_only_model":
bert_out = self.bert_model(x_embedded)
else:
bert_out = self.bert_model(
position_ids=position_ids,
inputs_embeds=x_embedded,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
)
if hasattr(bert_out, "last_hidden_state"):
last_hidden_state = bert_out.last_hidden_state
out = self.linear(last_hidden_state)
elif hasattr(bert_out, "logits"):
out = bert_out.logits
else:
out = bert_out
out = self.final_activation(out)
return out
|