File size: 39,422 Bytes
da572bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
import timm
import os
from typing import Any
from pytorch_lightning.utilities.types import LRSchedulerTypeUnion
import torch as t
from torch import nn
import transformers
import pytorch_lightning as plight
import torchmetrics
import einops as eo
from loss_functions import corn_loss, corn_label_from_logits

t.set_float32_matmul_precision("medium")
global_settings = dict(try_using_torch_compile=False)


class EnsembleModel(plight.LightningModule):
    def __init__(self, models_without_norm_df, models_with_norm_df, learning_rate=0.0002, use_simple_average=False):
        super().__init__()
        self.models_without_norm = nn.ModuleList(list(models_without_norm_df))
        self.models_with_norm = nn.ModuleList(list(models_with_norm_df))
        self.learning_rate = learning_rate
        self.use_simple_average = use_simple_average

        if not self.use_simple_average:
            self.combiner = nn.Linear(
                self.models_with_norm[0].num_classes * (len(self.models_with_norm) + len(self.models_without_norm)),
                self.models_with_norm[0].num_classes,
            )

    def forward(self, x):
        x_unnormed, x_normed = x
        if not self.use_simple_average:
            out_unnormed = t.cat([model.model_step(x_unnormed, 0)[0] for model in self.models_without_norm], dim=-1)
            out_normed = t.cat([model.model_step(x_normed, 0)[0] for model in self.models_with_norm], dim=-1)
            out_avg = self.combiner(t.cat((out_unnormed, out_normed), dim=-1))
        else:
            out_unnormed = [model.model_step(x_unnormed, 0)[0] for model in self.models_without_norm]
            out_normed = [model.model_step(x_normed, 0)[0] for model in self.models_with_norm]

            out_avg = (t.stack(out_unnormed + out_normed, dim=-1) / 2).mean(-1)
        return {"out_avg": out_avg, "out_unnormed": out_unnormed, "out_normed": out_normed}, x_unnormed[-1]

    def training_step(self, batch, batch_idx):
        out, y = self(batch)
        loss = self.models_with_norm[0]._get_loss(out["out_avg"], y, batch[0])
        self.log("train_loss", loss, on_epoch=True, on_step=True, sync_dist=True)
        return loss

    def validation_step(self, batch, batch_idx):
        out, y = self(batch)
        preds, y_onecold, ignore_index_val = self.models_with_norm[0]._get_preds_reals(out["out_avg"], y)
        acc = torchmetrics.functional.accuracy(
            preds,
            y_onecold.to(t.long),
            ignore_index=ignore_index_val,
            num_classes=self.models_with_norm[0].num_classes,
            task="multiclass",
        )
        self.log("acc", acc * 100, prog_bar=True, sync_dist=True)
        loss = self.models_with_norm[0]._get_loss(out["out_avg"], y, batch[0])
        self.log("val_loss", loss, prog_bar=True, sync_dist=True)
        return loss

    def predict_step(self, batch, batch_idx: int, dataloader_idx: int = 0):
        out, y = self(batch)
        preds, y_onecold, ignore_index_val = self.models_with_norm[0]._get_preds_reals(out["out_avg"], y)
        return preds, out, y_onecold

    def configure_optimizers(self):
        return t.optim.Adam(self.parameters(), lr=self.learning_rate)


class TimmHeadReplace(nn.Module):
    def __init__(self, pooling=None, in_channels=512, pooling_output_dimension=1, all_identity=False) -> None:
        super().__init__()

        if all_identity:
            self.head = nn.Identity()
            self.pooling = None
        else:
            self.pooling = pooling
            if pooling is not None:
                self.pooling_output_dimension = pooling_output_dimension
                if self.pooling == "AdaptiveAvgPool2d":
                    self.pooling_layer = nn.AdaptiveAvgPool2d(pooling_output_dimension)
                elif self.pooling == "AdaptiveMaxPool2d":
                    self.pooling_layer = nn.AdaptiveMaxPool2d(pooling_output_dimension)
            self.head = nn.Flatten()

    def forward(self, x, pre_logits=False):
        if self.pooling is not None:
            if self.pooling == "stack_avg_max_attn":
                x = t.cat([layer(x) for layer in self.pooling_layer], dim=-1)
            else:
                x = self.pooling_layer(x)
        return self.head(x)


class CVModel(nn.Module):
    def __init__(
        self,
        modelname,
        in_shape,
        num_classes,
        loss_func,
        last_activation: str,
        input_padding_val=10,
        char_dims=2,
        max_seq_length=1000,
    ) -> None:
        super().__init__()
        self.modelname = modelname
        self.loss_func = loss_func
        self.in_shape = in_shape
        self.char_dims = char_dims
        self.x_shape = in_shape
        self.last_activation = last_activation
        self.max_seq_length = max_seq_length
        self.num_classes = num_classes
        if self.loss_func == "OrdinalRegLoss":
            self.out_shape = 1
        else:
            self.out_shape = num_classes

        self.cv_model = timm.create_model(modelname, pretrained=True, num_classes=0)
        self.cv_model.classifier = nn.Identity()
        with t.inference_mode():
            test_out = self.cv_model(t.ones(self.in_shape, dtype=t.float32))
        self.cv_model_out_dim = test_out.shape[1]
        self.cv_model.classifier = nn.Sequential(nn.Flatten(), nn.Linear(self.cv_model_out_dim, self.max_seq_length))
        if self.out_shape == 1:
            self.logit_norm = nn.Identity()
            self.out_project = nn.Identity()
        else:
            self.logit_norm = nn.LayerNorm(self.max_seq_length)
            self.out_project = nn.Linear(1, self.out_shape)

        if last_activation == "Softmax":
            self.final_activation = nn.Softmax(dim=-1)
        elif last_activation == "Sigmoid":
            self.final_activation = nn.Sigmoid()
        elif last_activation == "LogSigmoid":
            self.final_activation = nn.LogSigmoid()
        elif last_activation == "Identity":
            self.final_activation = nn.Identity()
        else:
            raise NotImplementedError(f"{last_activation} not implemented")

    def forward(self, x):
        if isinstance(x, list):
            x = x[0]
        x = self.cv_model(x)
        x = self.cv_model.classifier(x).unsqueeze(-1)
        x = self.out_project(x)
        return self.final_activation(x)


class LitModel(plight.LightningModule):
    def __init__(
        self,
        in_shape: tuple,
        hidden_dim: int,
        num_attention_heads: int,
        num_layers: int,
        loss_func: str,
        learning_rate: float,
        weight_decay: float,
        cfg: dict,
        use_lr_warmup: bool,
        use_reduce_on_plateau: bool,
        track_gradient_histogram=False,
        register_forw_hook=False,
        char_dims=2,
    ) -> None:
        super().__init__()
        if "only_use_2nd_input_stream" not in cfg:
            cfg["only_use_2nd_input_stream"] = False

        if "gamma_step_size" not in cfg:
            cfg["gamma_step_size"] = 5
        if "gamma_step_factor" not in cfg:
            cfg["gamma_step_factor"] = 0.5
        self.save_hyperparameters(
            dict(
                in_shape=in_shape,
                hidden_dim=hidden_dim,
                num_attention_heads=num_attention_heads,
                num_layers=num_layers,
                loss_func=loss_func,
                learning_rate=learning_rate,
                cfg=cfg,
                x_shape=in_shape,
                num_classes=cfg["num_classes"],
                use_lr_warmup=use_lr_warmup,
                num_warmup_steps=cfg["num_warmup_steps"],
                use_reduce_on_plateau=use_reduce_on_plateau,
                weight_decay=weight_decay,
                track_gradient_histogram=track_gradient_histogram,
                register_forw_hook=register_forw_hook,
                char_dims=char_dims,
                remove_timm_classifier_head_pooling=cfg["remove_timm_classifier_head_pooling"],
                change_pooling_for_timm_head_to=cfg["change_pooling_for_timm_head_to"],
                chars_conv_pooling_out_dim=cfg["chars_conv_pooling_out_dim"],
            )
        )
        self.model_to_use = cfg["model_to_use"]
        self.num_classes = cfg["num_classes"]
        self.x_shape = in_shape
        self.in_shape = in_shape
        self.hidden_dim = hidden_dim
        self.num_attention_heads = num_attention_heads
        self.num_layers = num_layers

        self.use_lr_warmup = use_lr_warmup
        self.num_warmup_steps = cfg["num_warmup_steps"]
        self.warmup_exponent = cfg["warmup_exponent"]

        self.use_reduce_on_plateau = use_reduce_on_plateau
        self.loss_func = loss_func
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.using_one_hot_targets = cfg["one_hot_y"]
        self.track_gradient_histogram = track_gradient_histogram
        self.register_forw_hook = register_forw_hook
        if self.loss_func == "OrdinalRegLoss":
            self.ord_reg_loss_max = cfg["ord_reg_loss_max"]
            self.ord_reg_loss_min = cfg["ord_reg_loss_min"]

        self.num_lin_layers = cfg["num_lin_layers"]
        self.linear_activation = cfg["linear_activation"]
        self.last_activation = cfg["last_activation"]

        self.max_seq_length = cfg["manual_max_sequence_for_model"]

        self.use_char_embed_info = cfg["use_embedded_char_pos_info"]

        self.method_chars_into_model = cfg["method_chars_into_model"]
        self.source_for_pretrained_cv_model = cfg["source_for_pretrained_cv_model"]
        self.method_to_include_char_positions = cfg["method_to_include_char_positions"]

        self.char_dims = char_dims
        self.char_sequence_length = cfg["max_len_chars_list"] if self.use_char_embed_info else 0

        self.chars_conv_lr_reduction_factor = cfg["chars_conv_lr_reduction_factor"]
        if self.use_char_embed_info:
            self.chars_bert_reduction_factor = cfg["chars_bert_reduction_factor"]

        self.use_in_projection_bias = cfg["use_in_projection_bias"]
        self.add_layer_norm_to_in_projection = cfg["add_layer_norm_to_in_projection"]

        self.hidden_dropout_prob = cfg["hidden_dropout_prob"]
        self.layer_norm_after_in_projection = cfg["layer_norm_after_in_projection"]
        self.method_chars_into_model = cfg["method_chars_into_model"]
        self.input_padding_val = cfg["input_padding_val"]
        self.cv_char_modelname = cfg["cv_char_modelname"]
        self.char_plot_shape = cfg["char_plot_shape"]

        self.remove_timm_classifier_head_pooling = cfg["remove_timm_classifier_head_pooling"]
        self.change_pooling_for_timm_head_to = cfg["change_pooling_for_timm_head_to"]
        self.chars_conv_pooling_out_dim = cfg["chars_conv_pooling_out_dim"]

        self.add_layer_norm_to_char_mlp = cfg["add_layer_norm_to_char_mlp"]
        if "profile_torch_run" in cfg:
            self.profile_torch_run = cfg["profile_torch_run"]
        else:
            self.profile_torch_run = False
        if self.loss_func == "OrdinalRegLoss":
            self.out_shape = 1
        else:
            self.out_shape = cfg["num_classes"]

        if not self.hparams.cfg["only_use_2nd_input_stream"]:
            if (
                self.method_chars_into_model == "dense"
                and self.use_char_embed_info
                and self.method_to_include_char_positions == "concat"
            ):
                self.project = nn.Linear(self.x_shape[-1], self.hidden_dim // 2, bias=self.use_in_projection_bias)
            elif (
                self.method_chars_into_model == "bert"
                and self.use_char_embed_info
                and self.method_to_include_char_positions == "concat"
            ):
                self.hidden_dim_chars = self.hidden_dim // 2
                self.project = nn.Linear(self.x_shape[-1], self.hidden_dim_chars, bias=self.use_in_projection_bias)
            elif (
                self.method_chars_into_model == "resnet"
                and self.method_to_include_char_positions == "concat"
                and self.use_char_embed_info
            ):
                self.project = nn.Linear(self.x_shape[-1], self.hidden_dim // 2, bias=self.use_in_projection_bias)
            elif self.model_to_use == "cv_only_model":
                self.project = nn.Identity()
            else:
                self.project = nn.Linear(self.x_shape[-1], self.hidden_dim, bias=self.use_in_projection_bias)
            if self.add_layer_norm_to_in_projection:
                self.project = nn.Sequential(
                    nn.Linear(self.project.in_features, self.project.out_features, bias=self.use_in_projection_bias),
                    nn.LayerNorm(self.project.out_features),
                )

        if hasattr(self, "project") and "posix" in os.name and global_settings["try_using_torch_compile"]:
            self.project = t.compile(self.project)

        if self.use_char_embed_info:
            self._create_char_model()

        if self.layer_norm_after_in_projection:
            if self.hparams.cfg["only_use_2nd_input_stream"]:
                self.layer_norm_in = nn.LayerNorm(self.hidden_dim // 2)
            else:
                self.layer_norm_in = nn.LayerNorm(self.hidden_dim)

            if "posix" in os.name and global_settings["try_using_torch_compile"]:
                self.layer_norm_in = t.compile(self.layer_norm_in)

        self._create_main_seq_model(cfg)

        if register_forw_hook:
            self.register_hooks()
        if self.hparams.cfg["only_use_2nd_input_stream"]:
            linear_in_dim = self.hidden_dim // 2
        else:
            linear_in_dim = self.hidden_dim

        if self.num_lin_layers == 1:
            self.linear = nn.Linear(linear_in_dim, self.out_shape)
        else:
            lin_layers = []
            for _ in range(self.num_lin_layers - 1):
                lin_layers.extend(
                    [
                        nn.Linear(linear_in_dim, linear_in_dim),
                        getattr(nn, self.linear_activation)(),
                    ]
                )
            self.linear = nn.Sequential(*lin_layers, nn.Linear(linear_in_dim, self.out_shape))

        if "posix" in os.name and global_settings["try_using_torch_compile"]:
            self.linear = t.compile(self.linear)

        if self.last_activation == "Softmax":
            self.final_activation = nn.Softmax(dim=-1)
        elif self.last_activation == "Sigmoid":
            self.final_activation = nn.Sigmoid()
        elif self.last_activation == "Identity":
            self.final_activation = nn.Identity()
        else:
            raise NotImplementedError(f"{self.last_activation} not implemented")

        if self.profile_torch_run:
            self.profilerr = t.profiler.profile(
                schedule=t.profiler.schedule(wait=1, warmup=10, active=10, repeat=1),
                on_trace_ready=t.profiler.tensorboard_trace_handler("tblogs"),
                with_stack=True,
                record_shapes=True,
                profile_memory=False,
            )

    def _create_main_seq_model(self, cfg):
        if self.hparams.cfg["only_use_2nd_input_stream"]:
            hidden_dim = self.hidden_dim // 2
        else:
            hidden_dim = self.hidden_dim
        if self.model_to_use == "BERT":
            self.bert_config = transformers.BertConfig(
                vocab_size=self.x_shape[-1],
                hidden_size=hidden_dim,
                num_hidden_layers=self.num_layers,
                intermediate_size=hidden_dim,
                num_attention_heads=self.num_attention_heads,
                max_position_embeddings=self.max_seq_length,
            )
            self.bert_model = transformers.BertModel(self.bert_config)
        elif self.model_to_use == "cv_only_model":
            self.bert_model = CVModel(
                modelname=cfg["cv_modelname"],
                in_shape=self.in_shape,
                num_classes=cfg["num_classes"],
                loss_func=cfg["loss_function"],
                last_activation=cfg["last_activation"],
                input_padding_val=cfg["input_padding_val"],
                char_dims=self.char_dims,
                max_seq_length=cfg["manual_max_sequence_for_model"],
            )
        else:
            raise NotImplementedError(f"{self.model_to_use} not implemented")
        if "posix" in os.name and global_settings["try_using_torch_compile"]:
            self.bert_model = t.compile(self.bert_model)
        return 0

    def _create_char_model(self):
        if self.method_chars_into_model == "dense":
            self.chars_project_0 = nn.Linear(self.char_dims, 1, bias=self.use_in_projection_bias)
            if "posix" in os.name and global_settings["try_using_torch_compile"]:
                self.chars_project_0 = t.compile(self.chars_project_0)
            if self.method_to_include_char_positions == "concat":
                self.chars_project_1 = nn.Linear(
                    self.char_sequence_length, self.hidden_dim // 2, bias=self.use_in_projection_bias
                )
            else:
                self.chars_project_1 = nn.Linear(
                    self.char_sequence_length, self.hidden_dim, bias=self.use_in_projection_bias
                )

            if "posix" in os.name and global_settings["try_using_torch_compile"]:
                self.chars_project_1 = t.compile(self.chars_project_1)
        elif not self.method_chars_into_model == "resnet":
            self.chars_project = nn.Linear(self.char_dims, self.hidden_dim_chars, bias=self.use_in_projection_bias)
            if "posix" in os.name and global_settings["try_using_torch_compile"]:
                self.chars_project = t.compile(self.chars_project)

        if self.method_chars_into_model == "bert":
            if not hasattr(self, "hidden_dim_chars"):
                if self.hidden_dim // self.chars_bert_reduction_factor > 1:
                    self.hidden_dim_chars = self.hidden_dim // self.chars_bert_reduction_factor
                else:
                    self.hidden_dim_chars = self.hidden_dim
            self.num_attention_heads_chars = self.hidden_dim_chars // (self.hidden_dim // self.num_attention_heads)
            self.chars_bert_config = transformers.BertConfig(
                vocab_size=self.x_shape[-1],
                hidden_size=self.hidden_dim_chars,
                num_hidden_layers=self.num_layers,
                intermediate_size=self.hidden_dim_chars,
                num_attention_heads=self.num_attention_heads_chars,
                max_position_embeddings=self.char_sequence_length + 1,
                num_labels=1,
            )
            self.chars_bert = transformers.BertForSequenceClassification(self.chars_bert_config)

            if "posix" in os.name and global_settings["try_using_torch_compile"]:
                self.chars_bert = t.compile(self.chars_bert)
            self.chars_project_class_output = nn.Linear(1, self.hidden_dim_chars, bias=self.use_in_projection_bias)
            if "posix" in os.name and global_settings["try_using_torch_compile"]:
                self.chars_project_class_output = t.compile(self.chars_project_class_output)
        elif self.method_chars_into_model == "resnet":
            if self.source_for_pretrained_cv_model == "timm":
                self.chars_conv = timm.create_model(
                    self.cv_char_modelname,
                    pretrained=True,
                    num_classes=0,  # remove classifier nn.Linear
                )
                if self.remove_timm_classifier_head_pooling:
                    self.chars_conv.head = TimmHeadReplace(all_identity=True)
                    with t.inference_mode():
                        test_out = self.chars_conv(
                            t.ones((1, 3, self.char_plot_shape[0], self.char_plot_shape[1]), dtype=t.float32)
                        )
                    if test_out.ndim > 3:
                        self.chars_conv.head = TimmHeadReplace(
                            self.change_pooling_for_timm_head_to,
                            test_out.shape[1],
                        )
            elif self.source_for_pretrained_cv_model == "huggingface":
                self.chars_conv = transformers.AutoModelForImageClassification.from_pretrained(self.cv_char_modelname)
            elif self.source_for_pretrained_cv_model == "torch_hub":
                self.chars_conv = t.hub.load(*self.cv_char_modelname.split(","))

            if hasattr(self.chars_conv, "classifier"):
                self.chars_conv.classifier = nn.Identity()
            elif hasattr(self.chars_conv, "cls_classifier"):
                self.chars_conv.cls_classifier = nn.Identity()
            elif hasattr(self.chars_conv, "fc"):
                self.chars_conv.fc = nn.Identity()

            if hasattr(self.chars_conv, "distillation_classifier"):
                self.chars_conv.distillation_classifier = nn.Identity()
            with t.inference_mode():
                test_out = self.chars_conv(
                    t.ones((1, 3, self.char_plot_shape[0], self.char_plot_shape[1]), dtype=t.float32)
                )
            if hasattr(test_out, "last_hidden_state"):
                self.chars_conv_out_dim = test_out.last_hidden_state.shape[1]
            elif hasattr(test_out, "logits"):
                self.chars_conv_out_dim = test_out.logits.shape[1]
            elif isinstance(test_out, list):
                self.chars_conv_out_dim = test_out[0].shape[1]
            else:
                self.chars_conv_out_dim = test_out.shape[1]

            char_lin_layers = [nn.Flatten(), nn.Linear(self.chars_conv_out_dim, self.hidden_dim // 2)]
            if self.add_layer_norm_to_char_mlp:
                char_lin_layers.append(nn.LayerNorm(self.hidden_dim // 2))
            self.chars_classifier = nn.Sequential(*char_lin_layers)
            if hasattr(self.chars_conv, "distillation_classifier"):
                self.chars_conv.distillation_classifier = nn.Sequential(
                    nn.Flatten(), nn.Linear(self.chars_conv_out_dim, self.hidden_dim // 2)
                )

            if "posix" in os.name and global_settings["try_using_torch_compile"]:
                self.chars_classifier = t.compile(self.chars_classifier)
            if "posix" in os.name and global_settings["try_using_torch_compile"]:
                self.chars_conv = t.compile(self.chars_conv)
        return 0

    def register_hooks(self):
        def add_to_tb(layer):
            def hook(model, input, output):
                if hasattr(output, "detach"):
                    for logger in self.loggers:
                        if hasattr(logger.experiment, "add_histogram"):
                            logger.experiment.add_histogram(
                                tag=f"{layer}_{str(list(output.shape))}",
                                values=output.detach(),
                                global_step=self.trainer.global_step,
                            )

            return hook

        for layer_id, layer in dict([*self.named_modules()]).items():
            layer.register_forward_hook(add_to_tb(f"act_{layer_id}"))

    def on_after_backward(self) -> None:
        if self.track_gradient_histogram:
            if self.trainer.global_step % 200 == 0:
                for logger in self.loggers:
                    if hasattr(logger.experiment, "add_histogram"):
                        for layer_id, layer in dict([*self.named_modules()]).items():
                            parameters = layer.parameters()
                            for idx2, p in enumerate(parameters):
                                grad_val = p.grad
                                if grad_val is not None:
                                    grad_name = f"grad_{idx2}_{layer_id}_{str(list(p.grad.shape))}"
                                    logger.experiment.add_histogram(
                                        tag=grad_name, values=grad_val, global_step=self.trainer.global_step
                                    )

        return super().on_after_backward()

    def _fold_in_seq_dim(self, out, y):
        batch_size, seq_len, num_classes = out.shape
        out = eo.rearrange(out, "b s c -> (b s) c", s=seq_len)
        if y is None:
            return out, None
        if len(y.shape) > 2:
            y = eo.rearrange(y, "b s c -> (b s) c", s=seq_len)
        else:
            y = eo.rearrange(y, "b s -> (b s)", s=seq_len)
        return out, y

    def _get_loss(self, out, y, batch):
        attention_mask = batch[-2]
        if self.loss_func == "BCELoss":
            if self.last_activation == "Identity":
                loss = t.nn.functional.binary_cross_entropy_with_logits(out, y, reduction="none")
            else:
                loss = t.nn.functional.binary_cross_entropy(out, y, reduction="none")

            replace_tensor = t.zeros(loss[1, 1, :].shape, device=loss.device, dtype=loss.dtype, requires_grad=False)
            loss[~attention_mask.bool()] = replace_tensor
            loss = loss.mean()
        elif self.loss_func == "CrossEntropyLoss":
            if len(out.shape) > 2:
                out, y = self._fold_in_seq_dim(out, y)
                loss = t.nn.functional.cross_entropy(out, y, reduction="mean", ignore_index=-100)
            else:
                loss = t.nn.functional.cross_entropy(out, y, reduction="mean", ignore_index=-100)

        elif self.loss_func == "OrdinalRegLoss":
            loss = t.nn.functional.mse_loss(out, y, reduction="none")
            loss = loss[attention_mask.bool()].sum() * 10.0 / attention_mask.sum()
        elif self.loss_func == "corn_loss":
            out, y = self._fold_in_seq_dim(out, y)
            loss = corn_loss(out, y.squeeze(), self.out_shape)
        else:
            raise ValueError("Loss Function not reckognized")
        return loss

    def training_step(self, batch, batch_idx):
        if self.profile_torch_run:
            self.profilerr.step()
        out, y = self.model_step(batch, batch_idx)
        loss = self._get_loss(out, y, batch)
        self.log("train_loss", loss, on_epoch=True, on_step=True, sync_dist=True)
        return loss

    def forward(*args):
        return forward(args[0], args[1:])

    def model_step(self, batch, batch_idx):
        out = self.forward(batch)
        return out, batch[-1]

    def optimizer_step(
        self,
        epoch,
        batch_idx,
        optimizer,
        optimizer_closure,
    ):
        optimizer.step(closure=optimizer_closure)

        if self.use_lr_warmup and self.hparams["cfg"]["lr_scheduling"] != "OneCycleLR":
            if self.trainer.global_step < self.num_warmup_steps:
                lr_scale = min(1.0, float(self.trainer.global_step + 1) / self.num_warmup_steps) ** self.warmup_exponent
                for pg in optimizer.param_groups:
                    pg["lr"] = lr_scale * self.hparams.learning_rate
        if self.trainer.global_step % 10 == 0 or self.trainer.global_step == 0:
            for idx, pg in enumerate(optimizer.param_groups):
                self.log(f"lr_{idx}", pg["lr"], prog_bar=True, sync_dist=True)

    def lr_scheduler_step(self, scheduler: LRSchedulerTypeUnion, metric: Any | None) -> None:
        if self.use_lr_warmup and self.hparams["cfg"]["lr_scheduling"] != "OneCycleLR":
            if self.trainer.global_step > self.num_warmup_steps:
                if metric is None:
                    scheduler.step()
                else:
                    scheduler.step(metric)
        else:
            if metric is None:
                scheduler.step()
            else:
                scheduler.step(metric)

    def _get_preds_reals(self, out, y):
        if self.loss_func == "corn_loss":
            seq_len = out.shape[1]
            out, y = self._fold_in_seq_dim(out, y)
            preds = corn_label_from_logits(out)
            preds = eo.rearrange(preds, "(b s) -> b s", s=seq_len)
            if y is not None:
                y = eo.rearrange(y.squeeze(), "(b s) -> b s", s=seq_len)

        elif self.loss_func == "OrdinalRegLoss":
            preds = out * (self.ord_reg_loss_max - self.ord_reg_loss_min)
            preds = (preds + self.ord_reg_loss_min).round().to(t.long)

        else:
            preds = t.argmax(out, dim=-1)
        if y is None:
            return preds, y, -100
        else:
            if self.using_one_hot_targets:
                y_onecold = t.argmax(y, dim=-1)
                ignore_index_val = 0
            elif self.loss_func == "OrdinalRegLoss":
                y_onecold = (y * self.num_classes).round().to(t.long)

                y_onecold = y * (self.ord_reg_loss_max - self.ord_reg_loss_min)
                y_onecold = (y_onecold + self.ord_reg_loss_min).round().to(t.long)
                ignore_index_val = t.min(y_onecold).to(t.long)
            else:
                y_onecold = y
                ignore_index_val = -100

            if len(preds.shape) > len(y_onecold.shape):
                preds = preds.squeeze()
            return preds, y_onecold, ignore_index_val

    def validation_step(self, batch, batch_idx):
        out, y = self.model_step(batch, batch_idx)
        preds, y_onecold, ignore_index_val = self._get_preds_reals(out, y)

        if self.loss_func == "OrdinalRegLoss":
            y_onecold = y_onecold.flatten()
            preds = preds.flatten()[y_onecold != ignore_index_val]
            y_onecold = y_onecold[y_onecold != ignore_index_val]
            acc = (preds == y_onecold).sum() / len(y_onecold)
        else:
            acc = torchmetrics.functional.accuracy(
                preds,
                y_onecold.to(t.long),
                ignore_index=ignore_index_val,
                num_classes=self.num_classes,
                task="multiclass",
            )
            self.log("acc", acc * 100, prog_bar=True, sync_dist=True)
        loss = self._get_loss(out, y, batch)
        self.log("val_loss", loss, prog_bar=True, sync_dist=True)

        return loss

    def predict_step(self, batch, batch_idx):
        out, y = self.model_step(batch, batch_idx)
        preds, y_onecold, ignore_index_val = self._get_preds_reals(out, y)
        return preds, y_onecold

    def configure_optimizers(self):
        params = list(self.named_parameters())

        def is_chars_conv(n):
            if "chars_conv" not in n:
                return False
            if "chars_conv" in n and "classifier" in n:
                return False
            else:
                return True

        grouped_parameters = [
            {
                "params": [p for n, p in params if is_chars_conv(n)],
                "lr": self.learning_rate / self.chars_conv_lr_reduction_factor,
                "weight_decay": self.weight_decay,
            },
            {
                "params": [p for n, p in params if not is_chars_conv(n)],
                "lr": self.learning_rate,
                "weight_decay": self.weight_decay,
            },
        ]
        opti = t.optim.AdamW(grouped_parameters, lr=self.learning_rate, weight_decay=self.weight_decay)
        if self.use_reduce_on_plateau:
            opti_dict = {
                "optimizer": opti,
                "lr_scheduler": {
                    "scheduler": t.optim.lr_scheduler.ReduceLROnPlateau(opti, mode="min", patience=2, factor=0.5),
                    "monitor": "val_loss",
                    "frequency": 1,
                    "interval": "epoch",
                },
            }
            return opti_dict
        else:
            cfg = self.hparams["cfg"]
            if cfg["use_reduce_on_plateau"]:
                scheduler = None
            elif cfg["lr_scheduling"] == "multistep":
                scheduler = t.optim.lr_scheduler.MultiStepLR(
                    opti, milestones=cfg["multistep_milestones"], gamma=cfg["gamma_multistep"], verbose=False
                )
                interval = "step" if cfg["use_training_steps_for_end_and_lr_decay"] else "epoch"
            elif cfg["lr_scheduling"] == "StepLR":
                scheduler = t.optim.lr_scheduler.StepLR(
                    opti, step_size=cfg["gamma_step_size"], gamma=cfg["gamma_step_factor"]
                )
                interval = "step" if cfg["use_training_steps_for_end_and_lr_decay"] else "epoch"
            elif cfg["lr_scheduling"] == "anneal":
                scheduler = t.optim.lr_scheduler.CosineAnnealingLR(
                    opti, 250, eta_min=cfg["min_lr_anneal"], last_epoch=-1, verbose=False
                )
                interval = "step"
            elif cfg["lr_scheduling"] == "ExponentialLR":
                scheduler = t.optim.lr_scheduler.ExponentialLR(opti, gamma=cfg["lr_sched_exp_fac"])
                interval = "step"
            else:
                scheduler = None
            if scheduler is None:
                return [opti]
            else:
                opti_dict = {
                    "optimizer": opti,
                    "lr_scheduler": {
                        "scheduler": scheduler,
                        "monitor": "global_step",
                        "frequency": 1,
                        "interval": interval,
                    },
                }
                return opti_dict

    def on_fit_start(self) -> None:
        if self.profile_torch_run:
            self.profilerr.start()
        return super().on_fit_start()

    def on_fit_end(self) -> None:
        if self.profile_torch_run:
            self.profilerr.stop()
        return super().on_fit_end()


def prep_model_input(self, batch):
    if len(batch) == 1:
        batch = batch[0]
    if self.use_char_embed_info:
        if len(batch) == 5:
            x, chars_coords, ims, attention_mask, _ = batch
        elif batch[1].ndim == 4:
            x, ims, attention_mask, _ = batch
        else:
            x, chars_coords, attention_mask, _ = batch
        padding_list = None
    else:
        if len(batch) > 3:
            x = batch[0]
            y = batch[-1]
            attention_mask = batch[1]
        else:
            x, attention_mask, y = batch

    if self.model_to_use != "cv_only_model" and not self.hparams.cfg["only_use_2nd_input_stream"]:
        x_embedded = self.project(x)
    else:
        x_embedded = x
    if self.use_char_embed_info:
        if self.method_chars_into_model == "dense":
            bool_mask = chars_coords == self.input_padding_val
            bool_mask = bool_mask[:, :, 0]
            chars_coords_projected = self.chars_project_0(chars_coords).squeeze(-1)
            chars_coords_projected = chars_coords_projected * bool_mask
            if self.chars_project_1.in_features == chars_coords_projected.shape[-1]:
                chars_coords_projected = self.chars_project_1(chars_coords_projected)
            else:
                chars_coords_projected = chars_coords_projected.mean(dim=-1)
                chars_coords_projected = chars_coords_projected.unsqueeze(1).repeat(1, x_embedded.shape[2])
        elif self.method_chars_into_model == "bert":
            chars_mask = chars_coords != self.input_padding_val
            chars_mask = t.cat(
                (
                    t.ones(chars_mask[:, :1, 0].shape, dtype=t.long, device=chars_coords.device),
                    chars_mask[:, :, 0].to(t.long),
                ),
                dim=1,
            )
            chars_coords_projected = self.chars_project(chars_coords)

            position_ids = t.arange(
                0, chars_coords_projected.shape[1] + 1, dtype=t.long, device=chars_coords_projected.device
            )
            token_type_ids = t.zeros(
                (chars_coords_projected.size()[0], chars_coords_projected.size()[1] + 1),
                dtype=t.long,
                device=chars_coords_projected.device,
            )  # +1 for CLS
            chars_coords_projected = t.cat(
                (t.ones_like(chars_coords_projected[:, :1, :]), chars_coords_projected), dim=1
            )  # to add CLS token
            chars_coords_projected = self.chars_bert(
                position_ids=position_ids,
                inputs_embeds=chars_coords_projected,
                token_type_ids=token_type_ids,
                attention_mask=chars_mask,
            )
            if hasattr(chars_coords_projected, "last_hidden_state"):
                chars_coords_projected = chars_coords_projected.last_hidden_state[:, 0, :]
            elif hasattr(chars_coords_projected, "logits"):
                chars_coords_projected = chars_coords_projected.logits
            else:
                chars_coords_projected = chars_coords_projected.hidden_states[-1][:, 0, :]
        elif self.method_chars_into_model == "resnet":
            chars_conv_out = self.chars_conv(ims)
            if isinstance(chars_conv_out, list):
                chars_conv_out = chars_conv_out[0]
            if hasattr(chars_conv_out, "logits"):
                chars_conv_out = chars_conv_out.logits
            chars_coords_projected = self.chars_classifier(chars_conv_out)

        chars_coords_projected = chars_coords_projected.unsqueeze(1).repeat(1, x_embedded.shape[1], 1)
        if hasattr(self, "chars_project_class_output"):
            chars_coords_projected = self.chars_project_class_output(chars_coords_projected)

        if self.hparams.cfg["only_use_2nd_input_stream"]:
            x_embedded = chars_coords_projected
        elif self.method_to_include_char_positions == "concat":
            x_embedded = t.cat((x_embedded, chars_coords_projected), dim=-1)
        else:
            x_embedded = x_embedded + chars_coords_projected
    return x_embedded, attention_mask


def forward(self, batch):
    prepped_input = prep_model_input(self, batch)

    if len(batch) > 5:
        x_embedded, padding_list, attention_mask, attention_mask_for_prediction = prepped_input
    elif len(batch) > 2:
        x_embedded, attention_mask = prepped_input
    else:
        x_embedded = prepped_input[0]
        attention_mask = prepped_input[-1]

    position_ids = t.arange(0, x_embedded.shape[1], dtype=t.long, device=x_embedded.device)
    token_type_ids = t.zeros(x_embedded.size()[:-1], dtype=t.long, device=x_embedded.device)

    if self.layer_norm_after_in_projection:
        x_embedded = self.layer_norm_in(x_embedded)

    if self.model_to_use == "LSTM":
        bert_out = self.bert_model(x_embedded)
    elif self.model_to_use in ["ProphetNet", "T5", "FunnelModel"]:
        bert_out = self.bert_model(inputs_embeds=x_embedded, attention_mask=attention_mask)
    elif self.model_to_use == "xBERT":
        bert_out = self.bert_model(x_embedded, mask=attention_mask.to(bool))
    elif self.model_to_use == "cv_only_model":
        bert_out = self.bert_model(x_embedded)
    else:
        bert_out = self.bert_model(
            position_ids=position_ids,
            inputs_embeds=x_embedded,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
        )
    if hasattr(bert_out, "last_hidden_state"):
        last_hidden_state = bert_out.last_hidden_state
        out = self.linear(last_hidden_state)
    elif hasattr(bert_out, "logits"):
        out = bert_out.logits
    else:
        out = bert_out
    out = self.final_activation(out)
    return out