File size: 59,025 Bytes
da572bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 |
import pickle
from io import StringIO
import re
import zipfile
import os
import plotly.graph_objects as go
from io import StringIO
import numpy as np
import pandas as pd
from PIL import Image
import json
from matplotlib import pyplot as plt
import pathlib as pl
import matplotlib as mpl
from streamlit.runtime.uploaded_file_manager import UploadedFile
from tqdm.auto import tqdm
import time
import requests
from icecream import ic
from matplotlib import font_manager
from multi_proc_funcs import (
COLORS,
PLOTS_FOLDER,
RESULTS_FOLDER,
add_boxes_to_ax,
add_text_to_ax,
matplotlib_plot_df,
save_trial_to_json,
sigmoid,
)
import emreading_funcs as emf
ic.configureOutput(includeContext=True)
TEMP_FIGURE_STIMULUS_PATH = PLOTS_FOLDER / "temp_matplotlib_plot_stimulus.png"
all_fonts = [x.name for x in font_manager.fontManager.ttflist]
mpl.use("agg")
DIST_MODELS_FOLDER = pl.Path("models")
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
PLOTS_FOLDER = pl.Path("plots")
names_dict = {
"SSACC": {"Descr": "Start of Saccade", "Pattern": "SSACC <eye > <stime>"},
"ESACC": {
"Descr": "End of Saccade",
"Pattern": "ESACC <eye > <stime> <etime > <dur> <sxp > <syp> <exp > <eyp> <ampl > <pv >",
},
"SFIX": {"Descr": "Start of Fixation", "Pattern": "SFIX <eye > <stime>"},
"EFIX": {"Descr": "End of Fixation", "Pattern": "EFIX <eye > <stime> <etime > <dur> <axp > <ayp> <aps >"},
"SBLINK": {"Descr": "Start of Blink", "Pattern": "SBLINK <eye > <stime>"},
"EBLINK": {"Descr": "End of Blink", "Pattern": "EBLINK <eye > <stime> <etime > <dur>"},
"DISPLAY ON": {"Descr": "Actual start of Trial", "Pattern": "DISPLAY ON"},
}
metadata_strs = ["DISPLAY COORDS", "GAZE_COORDS", "FRAMERATE"]
POPEYE_FIXATION_COLS_DICT = {
"start": "start_time",
"stop": "end_time",
"xs": "x",
"ys": "y",
}
EMREADING_COLS_DROPLIST = ["hasText", "char_trial"]
EMREADING_COLS_DICT = {
"sub": "subject",
"item": "item",
"condition": "condition",
"SFIX": "start_time",
"EFIX": "end_time",
"xPos": "x",
"yPos": "y",
"fix_number": "fixation_number",
"fix_dur": "duration",
"wordID": "on_word_EM",
"outOfBnds": "out_of_bounds",
"outsideText": "out_of_text_area",
}
def download_url(url, target_filename):
max_retries = 4
for attempt in range(1, max_retries + 1):
try:
r = requests.get(url)
if r.status_code != 200:
ic(f"Download failed due to unsuccessful response from server: {r.status_code}")
return -1
open(target_filename, "wb").write(r.content)
return 0
except Exception as e:
if attempt < max_retries:
time.sleep(2 * attempt)
ic(f"Download failed due to an error; will try again in {attempt*2} seconds:", e)
else:
ic(f"Failed after all attempts ({url}). Error details:\n{e}")
return -1
def asc_to_trial_ids(
asc_file, close_gap_between_words, paragraph_trials_only, ias_files, trial_start_keyword, end_trial_at_keyword
):
asc_encoding = ["ISO-8859-15", "UTF-8"][0]
trials_dict, lines = file_to_trials_and_lines(
asc_file,
asc_encoding,
close_gap_between_words=close_gap_between_words,
paragraph_trials_only=paragraph_trials_only,
uploaded_ias_files=ias_files,
trial_start_keyword=trial_start_keyword,
end_trial_at_keyword=end_trial_at_keyword,
)
enum = (
trials_dict["paragraph_trials"]
if paragraph_trials_only and "paragraph_trials" in trials_dict.keys()
else range(trials_dict["max_trial_idx"])
)
trials_by_ids = {trials_dict[idx]["trial_id"]: trials_dict[idx] for idx in enum}
return trials_by_ids, lines, trials_dict
def get_trials_list(
asc_file, close_gap_between_words, paragraph_trials_only, ias_files, trial_start_keyword, end_trial_at_keyword
):
if hasattr(asc_file, "name"):
savename = pl.Path(asc_file.name).stem
else:
savename = pl.Path(asc_file).stem
trials_by_ids, lines, trials_dict = asc_to_trial_ids(
asc_file,
close_gap_between_words=close_gap_between_words,
paragraph_trials_only=paragraph_trials_only,
ias_files=ias_files,
trial_start_keyword=trial_start_keyword,
end_trial_at_keyword=end_trial_at_keyword,
)
trial_keys = list(trials_by_ids.keys())
savename = RESULTS_FOLDER / f"{savename}_metadata_overview.json"
offload_list = [
"gaze_df",
"dffix",
"chars_df",
"saccade_df",
"x_char_unique",
"line_heights",
"chars_list",
"words_list",
"dffix_sacdf_popEye",
"fixdf_popEye",
"saccade_df",
"sacdf_popEye",
"combined_df",
"events_df",
]
trials_dict_cut_down = {}
for k_outer, v_outer in trials_dict.items():
if isinstance(v_outer, dict):
trials_dict_cut_down[k_outer] = {}
for prop, val in v_outer.items():
if prop not in offload_list:
trials_dict_cut_down[k_outer][prop] = val
else:
trials_dict_cut_down[k_outer] = v_outer
save_trial_to_json(trials_dict_cut_down, savename=savename)
return trial_keys, trials_by_ids, lines, asc_file, trials_dict
def calc_xdiff_ydiff(line_xcoords_no_pad, line_ycoords_no_pad, line_heights, allow_multiple_values=False):
x_diffs = np.unique(np.diff(line_xcoords_no_pad))
if len(x_diffs) == 1:
x_diff = x_diffs[0]
elif not allow_multiple_values:
x_diff = np.min(x_diffs)
else:
x_diff = x_diffs
if np.unique(line_ycoords_no_pad).shape[0] == 1:
return x_diff, line_heights[0]
y_diffs = np.unique(np.diff(line_ycoords_no_pad))
if len(y_diffs) == 1:
y_diff = y_diffs[0]
elif len(y_diffs) == 0:
y_diff = 0
elif not allow_multiple_values:
y_diff = np.min(y_diffs)
else:
y_diff = y_diffs
return np.round(x_diff, decimals=2), np.round(y_diff, decimals=2)
def add_words(chars_list):
chars_list_reconstructed = []
words_list = []
sentence_list = []
sentence_start_idx = 0
sentence_num = 0
word_start_idx = 0
chars_df = pd.DataFrame(chars_list)
chars_df["char_width"] = chars_df.char_xmax - chars_df.char_xmin
word_dict = None
on_line_num = -1
line_change_on_next_char = False
num_chars = len(chars_list)
for idx, char_dict in enumerate(chars_list):
# check if line change will happen after current char
on_line_num = char_dict["assigned_line"]
if idx < num_chars - 1:
line_change_on_next_char = on_line_num != chars_list[idx + 1]["assigned_line"]
else:
line_change_on_next_char = False
chars_list_reconstructed.append(char_dict)
if char_dict["char"] in [" "] or len(chars_list_reconstructed) == len(chars_list) or line_change_on_next_char:
word_xmin = chars_list_reconstructed[word_start_idx]["char_xmin"]
if chars_list_reconstructed[-1]["char"] == " " and len(chars_list_reconstructed) != 1:
word_xmax = chars_list_reconstructed[-2]["char_xmax"]
word = "".join(
[
chars_list_reconstructed[idx]["char"]
for idx in range(word_start_idx, len(chars_list_reconstructed) - 1)
]
)
elif len(chars_list_reconstructed) == 1:
word_xmax = chars_list_reconstructed[-1]["char_xmax"]
word = " "
else:
word = "".join(
[
chars_list_reconstructed[idx]["char"]
for idx in range(word_start_idx, len(chars_list_reconstructed))
]
)
word_xmax = chars_list_reconstructed[-1]["char_xmax"]
word_ymin = chars_list_reconstructed[word_start_idx]["char_ymin"]
word_ymax = chars_list_reconstructed[word_start_idx]["char_ymax"]
word_x_center = round((word_xmax - word_xmin) / 2 + word_xmin, ndigits=2)
word_y_center = round((word_ymax - word_ymin) / 2 + word_ymin, ndigits=2)
word_length = len(word)
assigned_line = chars_list_reconstructed[word_start_idx]["assigned_line"]
word_dict = dict(
word_number=len(words_list),
word=word,
word_length=word_length,
word_xmin=word_xmin,
word_xmax=word_xmax,
word_ymin=word_ymin,
word_ymax=word_ymax,
word_x_center=word_x_center,
word_y_center=word_y_center,
assigned_line=assigned_line,
)
if len(word) > 0 and word != " ":
words_list.append(word_dict)
for cidx, char_dict in enumerate(chars_list_reconstructed[word_start_idx:]):
if char_dict["char"] == " ":
char_dict["in_word_number"] = len(words_list)
char_dict["in_word"] = " "
char_dict["num_letters_from_start_of_word"] = 0
else:
char_dict["in_word_number"] = len(words_list) - 1
char_dict["in_word"] = word
char_dict["num_letters_from_start_of_word"] = cidx
word_start_idx = idx + 1
if chars_list_reconstructed[-1]["char"] in [".", "!", "?"] or idx == (len(chars_list) - 1):
if idx != sentence_start_idx:
chars_df_temp = pd.DataFrame(chars_list_reconstructed[sentence_start_idx:])
line_texts = []
for sidx, subdf in chars_df_temp.groupby("assigned_line"):
line_text = "_".join(subdf.char.values)
line_text = line_text.replace("_ _", " ")
line_text = line_text.replace("_", "")
line_texts.append(line_text.strip())
sentence_text = " ".join(line_texts)
sentence_dict = dict(sentence_num=sentence_num, sentence_text=sentence_text)
sentence_list.append(sentence_dict)
for c in chars_list_reconstructed[sentence_start_idx:]:
c["in_sentence_number"] = sentence_num
c["in_sentence"] = sentence_text
sentence_start_idx = len(chars_list_reconstructed)
sentence_num += 1
else:
sentence_list[-1]["sentence_text"] += chars_list_reconstructed[sentence_start_idx]["char"]
chars_list_reconstructed[idx]["in_sentence_number"] = sentence_list[-1]["sentence_num"]
chars_list_reconstructed[idx]["in_sentence"] = sentence_list[-1]["sentence_text"]
for cidx, char_dict in enumerate(chars_list_reconstructed):
if (
char_dict["char"] == " "
and (cidx + 1) < len(chars_list_reconstructed)
and char_dict["assigned_line"] == chars_list_reconstructed[cidx + 1]["assigned_line"]
):
char_dict["in_word_number"] = chars_list_reconstructed[cidx + 1]["in_word_number"]
char_dict["in_word"] = chars_list_reconstructed[cidx + 1]["in_word"]
last_letter_in_word = words_list[-1]["word"][-1]
last_letter_in_chars_list_reconstructed = char_dict["char"]
if last_letter_in_word != last_letter_in_chars_list_reconstructed:
if last_letter_in_chars_list_reconstructed in [".", "!", "?"]:
words_list[-1] = dict(
word_number=len(words_list),
word=words_list[-1]["word"] + char_dict["char"],
word_length=len(words_list[-1]["word"] + char_dict["char"]),
word_xmin=words_list[-1]["word_xmin"],
word_xmax=char_dict["char_xmax"],
word_ymin=words_list[-1]["word_ymin"],
word_ymax=words_list[-1]["word_ymax"],
assigned_line=assigned_line,
)
word_x_center = round(
(words_list[-1]["word_xmax"] - words_list[-1]["word_xmin"]) / 2 + words_list[-1]["word_xmin"], ndigits=2
)
word_y_center = round(
(words_list[-1]["word_ymax"] - word_dict["word_ymin"]) / 2 + words_list[-1]["word_ymin"], ndigits=2
)
words_list[-1]["word_x_center"] = word_x_center
words_list[-1]["word_y_center"] = word_y_center
else:
word_dict = dict(
word_number=len(words_list),
word=char_dict["char"],
word_length=1,
word_xmin=char_dict["char_xmin"],
word_xmax=char_dict["char_xmax"],
word_ymin=char_dict["char_ymin"],
word_ymax=char_dict["char_ymax"],
word_x_center=char_dict["char_x_center"],
word_y_center=char_dict["char_y_center"],
assigned_line=assigned_line,
)
words_list.append(word_dict)
chars_list_reconstructed[-1]["in_word_number"] = len(words_list) - 1
chars_list_reconstructed[-1]["in_word"] = word_dict["word"]
chars_list_reconstructed[-1]["num_letters_from_start_of_word"] = 0
if len(sentence_list) > 0:
chars_list_reconstructed[-1]["in_sentence_number"] = sentence_num - 1
chars_list_reconstructed[-1]["in_sentence"] = sentence_list[-1]["sentence_text"]
else:
ic(f"Warning Sentence list empty: {sentence_list}")
return words_list, chars_list_reconstructed
def read_ias_file(ias_file, prefix):
if isinstance(ias_file, UploadedFile):
lines = StringIO(ias_file.getvalue().decode("utf-8")).readlines()
ias_dicts = []
for l in lines:
lsplit = l.strip().split("\t")
ldict = {
f"{prefix}_number": float(lsplit[1]),
f"{prefix}_xmin": float(lsplit[2]),
f"{prefix}_xmax": float(lsplit[4]),
f"{prefix}_ymin": float(lsplit[3]),
f"{prefix}_ymax": float(lsplit[5]),
prefix: lsplit[6],
}
ias_dicts.append(ldict)
ias_df = pd.DataFrame(ias_dicts)
else:
ias_df = pd.read_csv(ias_file, delimiter="\t", header=None)
ias_df = ias_df.rename(
{
1: f"{prefix}_number",
2: f"{prefix}_xmin",
4: f"{prefix}_xmax",
3: f"{prefix}_ymin",
5: f"{prefix}_ymax",
6: prefix,
},
axis=1,
)
first_line_df = ias_df[ias_df[f"{prefix}_ymin"] == ias_df.loc[0, f"{prefix}_ymin"]]
words_include_spaces = (
first_line_df[f"{prefix}_xmax"].values == first_line_df[f"{prefix}_xmin"].shift(-1).values
).any()
ias_df[f"{prefix}_width"] = ias_df[f"{prefix}_xmax"] - ias_df[f"{prefix}_xmin"]
if words_include_spaces:
ias_df[f"{prefix}_length"] = ias_df[prefix].map(lambda x: len(x) + 1)
ias_df[f"{prefix}_width_per_length"] = ias_df[f"{prefix}_width"] / ias_df[f"{prefix}_length"]
ias_df[f"{prefix}_xmax"] = (ias_df[f"{prefix}_xmax"] - ias_df[f"{prefix}_width_per_length"]).round(2)
ias_df[f"{prefix}_x_center"] = (
(ias_df[f"{prefix}_xmax"] - ias_df[f"{prefix}_xmin"]) / 2 + ias_df[f"{prefix}_xmin"]
).round(2)
ias_df[f"{prefix}_y_center"] = (
(ias_df[f"{prefix}_ymax"] - ias_df[f"{prefix}_ymin"]) / 2 + ias_df[f"{prefix}_ymin"]
).round(2)
unique_midlines = list(np.unique(ias_df[f"{prefix}_y_center"]))
assigned_lines = [unique_midlines.index(x) for x in ias_df[f"{prefix}_y_center"]]
ias_df["assigned_line"] = assigned_lines
ias_df[f"{prefix}_number"] = np.arange(ias_df.shape[0])
return ias_df
def get_chars_list_from_words_list(ias_df, prefix="word"):
ias_df.reset_index(inplace=True, drop=True)
unique_midlines = list(np.unique(ias_df[f"{prefix}_y_center"]))
chars_list = []
for (idx, row), (next_idx, next_row) in zip(ias_df.iterrows(), ias_df.shift(-1).iterrows()):
word = str(row[prefix])
letter_width = (row[f"{prefix}_xmax"] - row[f"{prefix}_xmin"]) / len(word)
for i_w, letter in enumerate(word):
char_dict = dict(
in_word_number=idx,
in_word=word,
char_xmin=round(row[f"{prefix}_xmin"] + i_w * letter_width, 2),
char_xmax=round(row[f"{prefix}_xmin"] + (i_w + 1) * letter_width, 2),
char_ymin=row[f"{prefix}_ymin"],
char_ymax=row[f"{prefix}_ymax"],
char=letter,
)
char_dict["char_x_center"] = round(
(char_dict["char_xmax"] - char_dict["char_xmin"]) / 2 + char_dict["char_xmin"], ndigits=2
)
char_dict["char_y_center"] = round(
(row[f"{prefix}_ymax"] - row[f"{prefix}_ymin"]) / 2 + row[f"{prefix}_ymin"], ndigits=2
)
if i_w >= len(word) + 1:
break
char_dict["assigned_line"] = unique_midlines.index(char_dict["char_y_center"])
chars_list.append(char_dict)
if chars_list[-1]["char"] != " " and row.assigned_line == next_row.assigned_line:
char_dict = dict(
char_xmin=chars_list[-1]["char_xmax"],
char_xmax=round(chars_list[-1]["char_xmax"] + letter_width, 2),
char_ymin=row[f"{prefix}_ymin"],
char_ymax=row[f"{prefix}_ymax"],
char=" ",
)
char_dict["char_x_center"] = round(
(char_dict["char_xmax"] - char_dict["char_xmin"]) / 2 + char_dict["char_xmin"], ndigits=2
)
char_dict["char_y_center"] = round(
(row[f"{prefix}_ymax"] - row[f"{prefix}_ymin"]) / 2 + row[f"{prefix}_ymin"], ndigits=2
)
char_dict["assigned_line"] = unique_midlines.index(char_dict["char_y_center"])
chars_list.append(char_dict)
chars_df = pd.DataFrame(chars_list)
chars_df.loc[:, ["in_word_number", "in_word"]] = chars_df.loc[:, ["in_word_number", "in_word"]].copy().ffill(axis=0)
return chars_df.to_dict("records")
def check_values(v1, v2):
"""Function that compares two lists for equality.
Returns True if both lists are the same; False if they are not; and None if either is None."""
# Check if any of the lists is None
if v1 is None or v2 is None or pd.isna(v1) or pd.isna(v2):
return None
# Compare elements in v1 with corresponding elements in v2
if v1 != v2:
return False
if v1 != v2:
return False
return True
def asc_lines_to_trials_by_trail_id(
lines: list,
paragraph_trials_only=True,
filename: str = "",
close_gap_between_words=True,
ias_files=[],
start_trial_at_keyword="START",
end_trial_at_keyword="END",
) -> dict:
if len(ias_files) > 0:
ias_files_dict = {pl.Path(f.name).stem: f for f in ias_files}
else:
ias_files_dict = {}
if hasattr(filename, "name"):
filename = filename.name
subject = pl.Path(filename).stem
y_px = []
x_px = []
calibration_offset = []
calibration_max_error = []
calibration_time = []
calibration_avg_error = []
trial_var_block_lines = None
question_answer = None
question_correct = None
condition = "UNKNOWN"
item = "UNKNOWN"
depend = "UNKNOWN"
trial_index = None
fps = None
display_coords = None
trial_var_block_idx = -1
trials_dict = dict(paragraph_trials=[], paragraph_trial_IDs=[])
trial_idx = -1
trial_var_block_start_idx = -1
removed_trial_ids = []
ias_file = ""
trial_var_block_lines_list = []
if "\n".join(map(str.strip, lines)).find("TRIAL_VAR") != -1:
for idx, l in enumerate(tqdm(lines, desc=f"Checking for TRIAL_VAR lines for {filename}")):
if trial_var_block_start_idx == -1 and "MSG" not in l:
continue
if "TRIAL_VAR" in l:
if trial_var_block_start_idx == -1:
trial_var_block_start_idx = idx
continue
else:
if trial_var_block_start_idx != -1:
trial_var_block_stop_idx = idx
trial_var_block_lines = [
x.strip() for x in lines[trial_var_block_start_idx:trial_var_block_stop_idx]
]
trial_var_block_lines_list.append(trial_var_block_lines)
trial_var_block_start_idx = -1
has_trial_var_lines = len(trial_var_block_lines_list) > 0
else:
has_trial_var_lines = False
for idx, l in enumerate(lines):
if "MSG" not in l:
continue
parts = l.strip().split(" ")
if "TRIALID" in l:
trial_id = re.split(r"[ :\t]+", l.strip())[-1]
trial_id_timestamp = parts[1]
trial_idx += 1
if trial_id[0] in ["F", "P", "E"]:
parse_dict = emf.parse_itemID(trial_id)
condition = parse_dict["condition"]
item = parse_dict["item"]
depend = parse_dict["depend"]
else:
parse_dict = {}
if trial_id[0] == "F":
trial_is = "question"
elif trial_id[0] == "P":
trial_is = "practice"
else:
if has_trial_var_lines:
trial_var_block_idx += 1
trial_var_block_lines = trial_var_block_lines_list[trial_var_block_idx]
image_lines = [s for s in trial_var_block_lines if "img" in s]
if len(image_lines) > 0:
item = image_lines[0].split(" ")[-1]
cond_lines = [s for s in trial_var_block_lines if "cond" in s]
if len(cond_lines) > 0:
condition = cond_lines[0].split(" ")[-1]
item_lines = [s for s in trial_var_block_lines if "item" in s]
if len(item_lines) > 0:
item = item_lines[0].split(" ")[-1]
trial_index_lines = [s for s in trial_var_block_lines if "Trial_Index" in s]
if len(trial_index_lines) > 0:
trial_index = trial_index_lines[0].split(" ")[-1]
question_key_lines = [s for s in trial_var_block_lines if "QUESTION_KEY_PRESSED" in s]
if len(question_key_lines) > 0:
question_answer = question_key_lines[0].split(" ")[-1]
question_response_lines = [s for s in trial_var_block_lines if " RESPONSE" in s]
if len(question_response_lines) > 0:
question_answer = question_response_lines[0].split(" ")[-1]
question_correct_lines = [
s for s in trial_var_block_lines if ("QUESTION_ACCURACY" in s) | (" ACCURACY" in s)
]
if len(question_correct_lines) > 0:
question_correct = question_correct_lines[0].split(" ")[-1]
trial_is_lines = [s for s in trial_var_block_lines if "trial" in s]
if len(trial_is_lines) > 0:
trial_is_line = trial_is_lines[0].split(" ")[-1]
if "pract" in trial_is_line or "end" in trial_is_line:
trial_is = "practice"
trial_id = f"{trial_is}_{trial_id}"
else:
trial_is = "paragraph"
trial_id = f"{condition}_{trial_is}_{trial_id}"
trials_dict["paragraph_trials"].append(trial_idx)
trials_dict["paragraph_trial_IDs"].append(trial_id)
else:
trial_is = "paragraph"
trial_id = f"{condition}_{trial_is}_{trial_id}_{trial_idx}"
trials_dict["paragraph_trials"].append(trial_idx)
trials_dict["paragraph_trial_IDs"].append(trial_id)
else:
if len(trial_id) > 1:
condition = trial_id[1]
trial_is = "paragraph"
trials_dict["paragraph_trials"].append(trial_idx)
trials_dict["paragraph_trial_IDs"].append(trial_id)
trials_dict[trial_idx] = dict(
subject=subject,
filename=filename,
trial_idx=trial_idx,
trial_id=trial_id,
trial_id_idx=idx,
trial_id_timestamp=trial_id_timestamp,
trial_is=trial_is,
trial_var_block_lines=trial_var_block_lines,
seq=trial_idx,
item=item,
depend=depend,
condition=condition,
parse_dict=parse_dict,
)
if question_answer is not None:
trials_dict[trial_idx]["question_answer"] = question_answer
if question_correct is not None:
trials_dict[trial_idx]["question_correct"] = question_correct
if trial_index is not None:
trials_dict[trial_idx]["trial_index"] = trial_index
last_trial_skipped = False
elif "TRIAL_RESULT" in l or "stop_trial" in l:
trials_dict[trial_idx]["trial_result_idx"] = idx
trials_dict[trial_idx]["trial_result_timestamp"] = int(parts[0].split("\t")[1])
if len(parts) > 2:
trials_dict[trial_idx]["trial_result_number"] = int(parts[2])
elif "QUESTION_ANSWER" in l and not has_trial_var_lines:
trials_dict[trial_idx]["question_answer_idx"] = idx
trials_dict[trial_idx]["question_answer_timestamp"] = int(parts[0].split("\t")[1])
if len(parts) > 2:
trials_dict[trial_idx]["question_answer_question_trial"] = int(
pd.to_numeric(l.strip().split(" ")[-1].strip(), errors="coerce")
)
elif "KEYBOARD" in l:
trials_dict[trial_idx]["keyboard_press_idx"] = idx
trials_dict[trial_idx]["keyboard_press_timestamp"] = int(parts[0].split("\t")[1])
elif "DISPLAY COORDS" in l and display_coords is None:
display_coords = (float(parts[-4]), float(parts[-3]), float(parts[-2]), float(parts[-1]))
elif "GAZE_COORDS" in l and display_coords is None:
display_coords = (float(parts[-4]), float(parts[-3]), float(parts[-2]), float(parts[-1]))
elif "FRAMERATE" in l:
l_idx = parts.index(metadata_strs[2])
fps = float(parts[l_idx + 1])
elif "TRIAL ABORTED" in l or "TRIAL REPEATED" in l:
if not last_trial_skipped:
if trial_is == "paragraph":
trials_dict["paragraph_trials"].remove(trial_idx)
trial_idx -= 1
removed_trial_ids.append(trial_id)
last_trial_skipped = True
elif "IAREA FILE" in l:
ias_file = parts[-1]
ias_file_stem = ias_file.split("/")[-1].split("\\")[-1].split(".")[0]
trials_dict[trial_idx]["ias_file_from_asc"] = ias_file
trials_dict[trial_idx]["ias_file"] = ias_file_stem
if item == "UNKNOWN":
trials_dict[trial_idx]["item"] = ias_file_stem
if ias_file_stem in ias_files_dict:
try:
ias_file = ias_files_dict[ias_file_stem]
ias_df = read_ias_file(ias_file, prefix="word") # TODO make option if word or chars in ias
trials_dict[trial_idx]["words_list"] = ias_df.to_dict("records")
trials_dict[trial_idx]["chars_list"] = get_chars_list_from_words_list(ias_df, prefix="word")
except Exception as e:
ic(f"Reading ias file failed")
ic(e)
else:
ic(f"IAS file {ias_file_stem} not found")
elif "CALIBRATION" in l and "MSG" in l:
calibration_method = parts[3].strip()
if trial_idx > -1:
trials_dict[trial_idx]["calibration_method"] = calibration_method
elif "VALIDATION" in l and "MSG" in l and "ABORTED" not in l:
try:
calibration_time_line_parts = re.split(r"[ :\t]+", l.strip())
calibration_time.append(float(calibration_time_line_parts[1]))
calibration_avg_error.append(float(calibration_time_line_parts[9]))
calibration_max_error.append(float(calibration_time_line_parts[11]))
calibration_offset.append(float(calibration_time_line_parts[14]))
x_px.append(float(calibration_time_line_parts[-2].split(",")[0]))
y_px.append(float(calibration_time_line_parts[-2].split(",")[1]))
except Exception as e:
ic(f"parsing VALIDATION failed for line {l}")
trials_df = pd.DataFrame([trials_dict[i] for i in range(trial_idx) if i in trials_dict])
if (
question_correct is None
and "trial_result_number" in trials_df.columns
and "question_answer_question_trial" in trials_df.columns
):
trials_df["question_answer_selection"] = trials_df["trial_result_number"].shift(-1).values
trials_df["correct_trial_answer_would_be"] = trials_df["question_answer_question_trial"].shift(-1).values
trials_df["question_correct"] = [
check_values(a, b)
for a, b in zip(trials_df["question_answer_selection"], trials_df["correct_trial_answer_would_be"])
]
for pidx, prow in trials_df.loc[trials_df.trial_is == "paragraph", :].iterrows():
trials_dict[pidx]["question_correct"] = prow["question_correct"]
if prow["question_correct"] is not None:
trials_dict[pidx]["question_answer_selection"] = prow["question_answer_selection"]
trials_dict[pidx]["correct_trial_answer_would_be"] = prow["correct_trial_answer_would_be"]
else:
trials_dict[pidx]["question_answer_selection"] = None
trials_dict[pidx]["correct_trial_answer_would_be"] = None
if "question_correct" in trials_df.columns:
paragraph_trials_df = trials_df.loc[trials_df.trial_is == "paragraph", :]
overall_question_answer_value_counts = (
paragraph_trials_df["question_correct"].dropna().astype(int).value_counts().to_dict()
)
overall_question_answer_value_counts_normed = (
paragraph_trials_df["question_correct"].dropna().astype(int).value_counts(normalize=True).to_dict()
)
else:
overall_question_answer_value_counts = None
overall_question_answer_value_counts_normed = None
if paragraph_trials_only:
trials_dict_temp = trials_dict.copy()
for k in trials_dict_temp.keys():
if k not in ["paragraph_trials"] + trials_dict_temp["paragraph_trials"]:
trials_dict.pop(k)
if len(trials_dict_temp["paragraph_trials"]):
trial_idx = trials_dict_temp["paragraph_trials"][-1]
else:
return trials_dict
trials_dict["display_coords"] = display_coords
trials_dict["fps"] = fps
trials_dict["max_trial_idx"] = trial_idx
trials_dict["overall_question_answer_value_counts"] = overall_question_answer_value_counts
trials_dict["overall_question_answer_value_counts_normed"] = overall_question_answer_value_counts_normed
enum = (
trials_dict["paragraph_trials"]
if ("paragraph_trials" in trials_dict.keys() and paragraph_trials_only)
else range(len(trials_dict))
)
for trial_idx in enum:
if trial_idx not in trials_dict.keys():
continue
if "chars_list" in trials_dict[trial_idx]:
chars_list = trials_dict[trial_idx]["chars_list"]
else:
chars_list = []
if "display_coords" not in trials_dict[trial_idx].keys():
trials_dict[trial_idx]["display_coords"] = trials_dict["display_coords"]
trials_dict[trial_idx]["overall_question_answer_value_counts"] = trials_dict[
"overall_question_answer_value_counts"
]
trials_dict[trial_idx]["overall_question_answer_value_counts_normed"] = trials_dict[
"overall_question_answer_value_counts_normed"
]
trial_start_idx = trials_dict[trial_idx]["trial_id_idx"]
trial_end_idx = trials_dict[trial_idx]["trial_result_idx"]
trial_lines = lines[trial_start_idx:trial_end_idx]
if len(y_px) > 0:
trials_dict[trial_idx]["y_px"] = y_px
trials_dict[trial_idx]["x_px"] = x_px
if "calibration_method" not in trials_dict[trial_idx]:
trials_dict[trial_idx]["calibration_method"] = calibration_method
trials_dict[trial_idx]["calibration_offset"] = calibration_offset
trials_dict[trial_idx]["calibration_max_error"] = calibration_max_error
trials_dict[trial_idx]["calibration_time"] = calibration_time
trials_dict[trial_idx]["calibration_avg_error"] = calibration_avg_error
for idx, l in enumerate(trial_lines):
parts = l.strip().split(" ")
if "START" in l and " MSG" not in l:
trials_dict[trial_idx]["text_end_idx"] = trial_start_idx + idx
trials_dict[trial_idx]["start_idx"] = trial_start_idx + idx + 7
trials_dict[trial_idx]["start_time"] = int(parts[0].split("\t")[1])
elif "END" in l and "ENDBUTTON" not in l and " MSG" not in l:
trials_dict[trial_idx]["end_idx"] = trial_start_idx + idx - 2
trials_dict[trial_idx]["end_time"] = int(parts[0].split("\t")[1])
elif "MSG" not in l:
continue
elif "ENDBUTTON" in l:
trials_dict[trial_idx]["endbutton_idx"] = trial_start_idx + idx
trials_dict[trial_idx]["endbutton_time"] = int(parts[0].split("\t")[1])
elif "SYNCTIME" in l:
trials_dict[trial_idx]["synctime"] = trial_start_idx + idx
trials_dict[trial_idx]["synctime_time"] = int(parts[0].split("\t")[1])
elif start_trial_at_keyword in l:
trials_dict[trial_idx][f"{start_trial_at_keyword}_line_idx"] = trial_start_idx + idx
trials_dict[trial_idx][f"{start_trial_at_keyword}_time"] = int(parts[0].split("\t")[1])
elif "GAZE TARGET OFF" in l:
trials_dict[trial_idx]["gaze_targ_off_time"] = int(parts[0].split("\t")[1])
elif "GAZE TARGET ON" in l:
trials_dict[trial_idx]["gaze_targ_on_time"] = int(parts[0].split("\t")[1])
trials_dict[trial_idx]["gaze_targ_on_time_idx"] = trial_start_idx + idx
elif "DISPLAY_SENTENCE" in l: # some .asc files seem to use this
trials_dict[trial_idx]["gaze_targ_on_time"] = int(parts[0].split("\t")[1])
trials_dict[trial_idx]["gaze_targ_on_time_idx"] = trial_start_idx + idx
elif "DISPLAY TEXT" in l:
trials_dict[trial_idx]["text_start_idx"] = trial_start_idx + idx
elif "REGION CHAR" in l:
rg_idx = parts.index("CHAR")
if len(parts[rg_idx:]) > 8:
char = " "
idx_correction = 1
elif len(parts[rg_idx:]) == 3:
char = " "
if "REGION CHAR" not in trial_lines[idx + 1]:
parts = trial_lines[idx + 1].strip().split(" ")
idx_correction = -rg_idx - 4
else:
char = parts[rg_idx + 3]
idx_correction = 0
try:
char_dict = {
"char": char,
"char_xmin": float(parts[rg_idx + 4 + idx_correction]),
"char_ymin": float(parts[rg_idx + 5 + idx_correction]),
"char_xmax": float(parts[rg_idx + 6 + idx_correction]),
"char_ymax": float(parts[rg_idx + 7 + idx_correction]),
}
char_dict["char_y_center"] = round(
(char_dict["char_ymax"] - char_dict["char_ymin"]) / 2 + char_dict["char_ymin"], ndigits=2
)
char_dict["char_x_center"] = round(
(char_dict["char_xmax"] - char_dict["char_xmin"]) / 2 + char_dict["char_xmin"], ndigits=2
)
chars_list.append(char_dict)
except Exception as e:
ic(f"char_dict creation failed for parts {parts}")
ic(e)
if start_trial_at_keyword == "SYNCTIME" and "synctime_time" in trials_dict[trial_idx]:
trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx]["synctime_time"]
trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx]["synctime"]
elif start_trial_at_keyword == "GAZE TARGET ON" and "gaze_targ_on_time" in trials_dict[trial_idx]:
trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx]["gaze_targ_on_time"]
trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx]["gaze_targ_on_time_idx"]
elif start_trial_at_keyword == "START":
trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx]["start_time"]
trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx]["start_idx"]
elif f"{start_trial_at_keyword}_time" in trials_dict[trial_idx]:
trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx][f"{start_trial_at_keyword}_time"]
trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx][f"{start_trial_at_keyword}_line_idx"]
else:
trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx]["start_time"]
trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx]["start_idx"]
if end_trial_at_keyword == "ENDBUTTON" and "endbutton_time" in trials_dict[trial_idx]:
trials_dict[trial_idx]["trial_end_time"] = trials_dict[trial_idx]["endbutton_time"]
trials_dict[trial_idx]["trial_end_idx"] = trials_dict[trial_idx]["endbutton_idx"]
elif end_trial_at_keyword == "END" and "end_idx" in trials_dict[trial_idx]:
trials_dict[trial_idx]["trial_end_time"] = trials_dict[trial_idx]["end_time"]
trials_dict[trial_idx]["trial_end_idx"] = trials_dict[trial_idx]["end_idx"]
elif end_trial_at_keyword == "KEYBOARD" and "keyboard_press_idx" in trials_dict[trial_idx]:
trials_dict[trial_idx]["trial_end_idx"] = trials_dict[trial_idx]["keyboard_press_idx"]
else:
trials_dict[trial_idx]["trial_end_idx"] = trials_dict[trial_idx]["trial_result_idx"]
if trials_dict[trial_idx]["trial_end_idx"] < trials_dict[trial_idx]["trial_start_idx"]:
raise ValueError(f"trial_start_idx is larger than trial_end_idx for trial_idx {trial_idx}")
if len(chars_list) > 0:
line_ycoords = []
for idx in range(len(chars_list)):
chars_list[idx]["char_y_center"] = round(
(chars_list[idx]["char_ymax"] - chars_list[idx]["char_ymin"]) / 2 + chars_list[idx]["char_ymin"],
ndigits=2,
)
if chars_list[idx]["char_y_center"] not in line_ycoords:
line_ycoords.append(chars_list[idx]["char_y_center"])
for idx in range(len(chars_list)):
chars_list[idx]["assigned_line"] = line_ycoords.index(chars_list[idx]["char_y_center"])
letter_width_avg = np.mean(
[x["char_xmax"] - x["char_xmin"] for x in chars_list if x["char_xmax"] > x["char_xmin"]]
)
line_heights = [round(abs(x["char_ymax"] - x["char_ymin"]), 3) for x in chars_list]
line_xcoords_all = [x["char_x_center"] for x in chars_list]
line_xcoords_no_pad = np.unique(line_xcoords_all)
line_ycoords_all = [x["char_y_center"] for x in chars_list]
line_ycoords_no_pad = np.unique(line_ycoords_all)
trials_dict[trial_idx]["x_char_unique"] = list(line_xcoords_no_pad)
trials_dict[trial_idx]["y_char_unique"] = list(line_ycoords_no_pad)
x_diff, y_diff = calc_xdiff_ydiff(
line_xcoords_no_pad, line_ycoords_no_pad, line_heights, allow_multiple_values=False
)
trials_dict[trial_idx]["x_diff"] = float(x_diff)
trials_dict[trial_idx]["y_diff"] = float(y_diff)
trials_dict[trial_idx]["num_char_lines"] = len(line_ycoords_no_pad)
trials_dict[trial_idx]["letter_width_avg"] = letter_width_avg
trials_dict[trial_idx]["line_heights"] = line_heights
words_list_from_func, chars_list_reconstructed = add_words(chars_list)
words_list = words_list_from_func
if close_gap_between_words: # TODO this may need to change the "in_word" col for the chars_df
for widx in range(1, len(words_list)):
if words_list[widx]["assigned_line"] == words_list[widx - 1]["assigned_line"]:
word_sep_half_width = (words_list[widx]["word_xmin"] - words_list[widx - 1]["word_xmax"]) / 2
words_list[widx - 1]["word_xmax"] = words_list[widx - 1]["word_xmax"] + word_sep_half_width
words_list[widx]["word_xmin"] = words_list[widx]["word_xmin"] - word_sep_half_width
else:
chars_df = pd.DataFrame(chars_list_reconstructed)
chars_df.loc[
chars_df["char"] == " ", ["in_word", "in_word_number", "num_letters_from_start_of_word"]
] = pd.NA
chars_list_reconstructed = chars_df.to_dict("records")
trials_dict[trial_idx]["words_list"] = words_list
trials_dict[trial_idx]["chars_list"] = chars_list_reconstructed
return trials_dict
def get_lines_from_file(uploaded_file, asc_encoding="ISO-8859-15"):
if isinstance(uploaded_file, str) or isinstance(uploaded_file, pl.Path):
with open(uploaded_file, "r", encoding=asc_encoding) as f:
lines = f.readlines()
else:
stringio = StringIO(uploaded_file.getvalue().decode(asc_encoding))
loaded_str = stringio.read()
lines = loaded_str.split("\n")
return lines
def file_to_trials_and_lines(
uploaded_file,
asc_encoding: str = "ISO-8859-15",
close_gap_between_words=True,
paragraph_trials_only=True,
uploaded_ias_files=[],
trial_start_keyword="START",
end_trial_at_keyword="END",
):
lines = get_lines_from_file(uploaded_file, asc_encoding=asc_encoding)
trials_dict = asc_lines_to_trials_by_trail_id(
lines,
paragraph_trials_only,
uploaded_file,
close_gap_between_words=close_gap_between_words,
ias_files=uploaded_ias_files,
start_trial_at_keyword=trial_start_keyword,
end_trial_at_keyword=end_trial_at_keyword,
)
if "paragraph_trials" not in trials_dict.keys() and "trial_is" in trials_dict[0].keys():
paragraph_trials = []
for k in range(trials_dict["max_trial_idx"]):
if trials_dict[k]["trial_is"] == "paragraph":
paragraph_trials.append(k)
trials_dict["paragraph_trials"] = paragraph_trials
enum = (
trials_dict["paragraph_trials"]
if paragraph_trials_only and "paragraph_trials" in trials_dict.keys()
else range(trials_dict["max_trial_idx"])
)
for k in enum:
if "chars_list" in trials_dict[k].keys():
max_line = trials_dict[k]["chars_list"][-1]["assigned_line"]
words_on_lines = {x: [] for x in range(max_line + 1)}
[words_on_lines[x["assigned_line"]].append(x["char"]) for x in trials_dict[k]["chars_list"]]
line_list = ["".join([s for s in v]) for idx, v in words_on_lines.items()]
sentences_temp = "".join([x["char"] for x in trials_dict[k]["chars_list"]])
sentences = re.split(r"(?<!\w\.\w.)(?<![A-Z]\.)(?<![A-Z][a-z]\.)(?<=\.|\?)", sentences_temp)
text = "\n".join([x for x in line_list])
trials_dict[k]["sentence_list"] = [s for s in sentences if len(s) > 0]
trials_dict[k]["line_list"] = line_list
trials_dict[k]["text"] = text
trials_dict[k]["max_line"] = max_line
return trials_dict, lines
def discard_empty_str_from_list(l):
return [x for x in l if len(x) > 0]
def make_folders(gradio_temp_folder, gradio_temp_unzipped_folder, PLOTS_FOLDER):
gradio_temp_folder.mkdir(exist_ok=True)
gradio_temp_unzipped_folder.mkdir(exist_ok=True)
PLOTS_FOLDER.mkdir(exist_ok=True)
return 0
def plotly_plot_with_image(
dffix,
trial,
algo_choice,
saccade_df=None,
to_plot_list=["Uncorrected Fixations", "Corrected Fixations", "Word boxes"],
lines_in_plot="Uncorrected",
scale_factor=0.5,
font="DejaVu Sans Mono",
box_annotations: list = None,
):
mpl_fig, img_width, img_height = matplotlib_plot_df(
dffix,
trial,
algo_choice,
None,
desired_dpi=300,
fix_to_plot=[],
stim_info_to_plot=to_plot_list,
font=font,
box_annotations=box_annotations,
)
mpl_fig.savefig(TEMP_FIGURE_STIMULUS_PATH)
plt.close(mpl_fig)
if lines_in_plot == "Uncorrected":
uncorrected_plot_mode = "markers+lines+text"
else:
uncorrected_plot_mode = "markers+text"
if lines_in_plot == "Corrected":
corrected_plot_mode = "markers+lines+text"
else:
corrected_plot_mode = "markers+text"
if lines_in_plot == "Both":
uncorrected_plot_mode = "markers+lines+text"
corrected_plot_mode = "markers+lines+text"
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=[0, img_width * scale_factor],
y=[img_height * scale_factor, 0],
mode="markers",
marker_opacity=0,
name="scale_helper",
)
)
fig.update_xaxes(visible=False, range=[0, img_width * scale_factor])
fig.update_yaxes(
visible=False,
range=[img_height * scale_factor, 0],
scaleanchor="x",
)
if (
"Words" in to_plot_list
or "Word boxes" in to_plot_list
or "Character boxes" in to_plot_list
or "Characters" in to_plot_list
):
imsource = Image.open(str(TEMP_FIGURE_STIMULUS_PATH))
fig.add_layout_image(
dict(
x=0,
sizex=img_width * scale_factor,
y=0,
sizey=img_height * scale_factor,
xref="x",
yref="y",
opacity=1.0,
layer="below",
sizing="stretch",
source=imsource,
)
)
duration_scaled = dffix.duration - dffix.duration.min()
duration_scaled = ((duration_scaled / duration_scaled.max()) - 0.5) * 3
duration = sigmoid(duration_scaled) * 50 * scale_factor
if "Uncorrected Fixations" in to_plot_list:
fig.add_trace(
go.Scatter(
x=dffix.x * scale_factor,
y=dffix.y * scale_factor,
mode=uncorrected_plot_mode,
name="Raw fixations",
marker=dict(
color=COLORS[-1],
symbol="arrow",
size=duration.values,
angleref="previous",
),
line=dict(color=COLORS[-1], width=2 * scale_factor),
text=np.arange(dffix.shape[0]),
textposition="top right",
textfont=dict(
family="sans serif",
size=23 * scale_factor,
color=COLORS[-1],
),
hovertext=[f"x:{x}, y:{y}, n:{num}" for x, y, num in zip(dffix.x, dffix[f"y"], range(dffix.shape[0]))],
opacity=0.9,
)
)
if "Corrected Fixations" in to_plot_list:
if isinstance(algo_choice, list):
algo_choices = algo_choice
repeats = range(len(algo_choice))
else:
algo_choices = [algo_choice]
repeats = range(1)
for algoIdx in repeats:
algo_choice = algo_choices[algoIdx]
if f"y_{algo_choice}" in dffix.columns:
fig.add_trace(
go.Scatter(
x=dffix.x * scale_factor,
y=dffix.loc[:, f"y_{algo_choice}"] * scale_factor,
mode=corrected_plot_mode,
name=algo_choice,
marker=dict(
color=COLORS[algoIdx],
symbol="arrow",
size=duration.values,
angleref="previous",
),
line=dict(color=COLORS[algoIdx], width=1.5 * scale_factor),
text=np.arange(dffix.shape[0]),
textposition="top center",
textfont=dict(
family="sans serif",
size=22 * scale_factor,
color=COLORS[algoIdx],
),
hovertext=[
f"x:{x}, y:{y}, n:{num}"
for x, y, num in zip(dffix.x, dffix[f"y_{algo_choice}"], range(dffix.shape[0]))
],
opacity=0.9,
)
)
if "Saccades" in to_plot_list:
duration_scaled = saccade_df.duration - saccade_df.duration.min()
duration_scaled = ((duration_scaled / duration_scaled.max()) - 0.5) * 3
duration = sigmoid(duration_scaled) * 65 * scale_factor
starting_coordinates = [tuple(row * scale_factor) for row in saccade_df.loc[:, ["xs", "ys"]].values]
ending_coordinates = [tuple(row * scale_factor) for row in saccade_df.loc[:, ["xe", "ye"]].values]
for sidx, (start, end) in enumerate(zip(starting_coordinates, ending_coordinates)):
if sidx == 0:
show_legend = True
else:
show_legend = False
fig.add_trace(
go.Scatter(
x=[start[0], end[0]],
y=[start[1], end[1]],
mode="markers+lines+text",
line=dict(color=COLORS[-1], width=1.5 * scale_factor, dash="dash"),
showlegend=show_legend,
legendgroup="1",
name="Saccades",
text=sidx,
textposition="top center",
textfont=dict(family="sans serif", size=22 * scale_factor, color=COLORS[-1]),
marker=dict(
color=COLORS[-1],
symbol="arrow",
size=duration.values,
angleref="previous",
),
)
)
if "Saccades snapped to line" in to_plot_list:
duration_scaled = saccade_df.duration - saccade_df.duration.min()
duration_scaled = ((duration_scaled / duration_scaled.max()) - 0.5) * 3
duration = sigmoid(duration_scaled) * 65 * scale_factor
if isinstance(algo_choice, list):
algo_choices = algo_choice
repeats = range(len(algo_choice))
else:
algo_choices = [algo_choice]
repeats = range(1)
for algoIdx in repeats:
algo_choice = algo_choices[algoIdx]
if f"ys_{algo_choice}" in saccade_df.columns:
starting_coordinates = [
tuple(row * scale_factor) for row in saccade_df.loc[:, ["xs", f"ys_{algo_choice}"]].values
]
ending_coordinates = [
tuple(row * scale_factor) for row in saccade_df.loc[:, ["xe", f"ye_{algo_choice}"]].values
]
for sidx, (start, end) in enumerate(zip(starting_coordinates, ending_coordinates)):
if sidx == 0:
show_legend = True
else:
show_legend = False
fig.add_trace(
go.Scatter(
x=[start[0], end[0]],
y=[start[1], end[1]],
mode="markers+lines",
line=dict(color=COLORS[algoIdx], width=1.5 * scale_factor, dash="dash"),
showlegend=show_legend,
legendgroup="2",
text=sidx,
textposition="top center",
textfont=dict(family="sans serif", size=22 * scale_factor, color=COLORS[algoIdx]),
name="Saccades snapped to line",
marker=dict(
color=COLORS[algoIdx],
symbol="arrow",
size=duration.values,
angleref="previous",
),
)
)
fig.update_layout(
plot_bgcolor=None,
width=img_width * scale_factor,
height=img_height * scale_factor,
margin={"l": 0, "r": 0, "t": 0, "b": 0},
legend=dict(orientation="h", yanchor="bottom", y=-0.1, xanchor="right", x=0.8),
)
for trace in fig["data"]:
if trace["name"] == "scale_helper":
trace["showlegend"] = False
return fig
def plot_fix_measure(
dffix,
plot_choices,
x_axis_selection,
margin=dict(t=40, l=10, r=10, b=1),
label_start="Fixation",
):
y_label = f"{label_start} Feature"
if x_axis_selection == "Index":
num_datapoints = dffix.shape[0]
x_label = f"{label_start} Number"
x_nums = np.arange(num_datapoints)
elif x_axis_selection == "Start Time":
x_label = f"{label_start} Start Time"
x_nums = dffix["start_time"]
layout = dict(
plot_bgcolor="white",
autosize=True,
margin=margin,
xaxis=dict(
title=x_label,
linecolor="black",
range=[x_nums.min() - 1, x_nums.max() + 1],
showgrid=False,
mirror="all",
showline=True,
),
yaxis=dict(
title=y_label,
side="left",
linecolor="black",
showgrid=False,
mirror="all",
showline=True,
),
legend=dict(orientation="v", yanchor="middle", y=0.95, xanchor="left", x=1.05),
)
fig = go.Figure(layout=layout)
for pidx, plot_choice in enumerate(plot_choices):
fig.add_trace(
go.Scatter(
x=x_nums,
y=dffix.loc[:, plot_choice],
mode="markers",
name=plot_choice,
marker_color=COLORS[pidx],
marker_size=3,
showlegend=True,
)
)
fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor="black")
return fig
def plot_y_corr(dffix, algo_choice, margin=dict(t=40, l=10, r=10, b=1)):
num_datapoints = len(dffix.x)
layout = dict(
plot_bgcolor="white",
autosize=True,
margin=margin,
xaxis=dict(
title="Fixation Index",
linecolor="black",
range=[-1, num_datapoints + 1],
showgrid=False,
mirror="all",
showline=True,
),
yaxis=dict(
title="y correction",
side="left",
linecolor="black",
showgrid=False,
mirror="all",
showline=True,
),
legend=dict(orientation="v", yanchor="middle", y=0.95, xanchor="left", x=1.05),
)
if isinstance(dffix, dict):
dffix = dffix["value"]
algo_string = algo_choice[0] if isinstance(algo_choice, list) else algo_choice
if f"y_{algo_string}_correction" not in dffix.columns:
ic("No line-assignment column found in dataframe")
return go.Figure(layout=layout)
if isinstance(dffix, dict):
dffix = dffix["value"]
fig = go.Figure(layout=layout)
if isinstance(algo_choice, list):
algo_choices = algo_choice
repeats = range(len(algo_choice))
else:
algo_choices = [algo_choice]
repeats = range(1)
for algoIdx in repeats:
algo_choice = algo_choices[algoIdx]
fig.add_trace(
go.Scatter(
x=np.arange(num_datapoints),
y=dffix.loc[:, f"y_{algo_choice}_correction"],
mode="markers",
name=f"{algo_choice} y correction",
marker_color=COLORS[algoIdx],
marker_size=3,
showlegend=True,
)
)
fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor="black")
return fig
def download_example_ascs(EXAMPLES_FOLDER, EXAMPLES_ASC_ZIP_FILENAME, OSF_DOWNLAOD_LINK, EXAMPLES_FOLDER_PATH):
if not os.path.isdir(EXAMPLES_FOLDER):
os.mkdir(EXAMPLES_FOLDER)
if not os.path.exists(EXAMPLES_ASC_ZIP_FILENAME):
download_url(OSF_DOWNLAOD_LINK, EXAMPLES_ASC_ZIP_FILENAME)
if os.path.exists(EXAMPLES_ASC_ZIP_FILENAME):
if EXAMPLES_FOLDER_PATH.exists():
EXAMPLE_ASC_FILES = [x for x in EXAMPLES_FOLDER_PATH.glob("*.asc")]
if len(EXAMPLE_ASC_FILES) != 4:
try:
with zipfile.ZipFile(EXAMPLES_ASC_ZIP_FILENAME, "r") as zip_ref:
zip_ref.extractall(EXAMPLES_FOLDER)
except Exception as e:
ic(e)
ic(f"Extracting {EXAMPLES_ASC_ZIP_FILENAME} failed")
EXAMPLE_ASC_FILES = [x for x in EXAMPLES_FOLDER_PATH.glob("*.asc")]
else:
EXAMPLE_ASC_FILES = []
return EXAMPLE_ASC_FILES
|