File size: 191,183 Bytes
da572bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
import subprocess
import copy
from io import StringIO
import streamlit as st
import pandas as pd
import numpy as np
import time
import os
from icecream import ic
import plotly.graph_objects as go
import numpy as np
import pandas as pd
import pathlib as pl
import json
import logging
import zipfile
from stqdm import stqdm
import jellyfish as jf
import shutil
import eyekit_measures as ekm
import zipfile
from matplotlib import font_manager
import os

from multi_proc_funcs import (
    ALL_FIX_MEASURES,
    COLORS,
    DEFAULT_FIX_MEASURES,
    add_default_font_and_character_props_to_state,
    clean_dffix_own,
    export_dataframe,
    export_trial,
    get_plot_props,
    get_raw_events_df_and_trial,
    get_saccade_df,
    plot_saccade_df,
    process_trial_choice,
    reorder_columns,
    set_font_from_chars_list,
    correct_df,
    get_font_and_font_size_from_trial,
    matplotlib_plot_df,
    get_all_measures,
    add_popEye_cols_to_chars_df,
    AVAILABLE_FONTS,
    PLOTS_FOLDER,
    RESULTS_FOLDER,
    set_up_models,
    add_cols_from_trial,
)
import utils as ut
import popEye_funcs as pf

ic.configureOutput(includeContext=True)
os.environ["MPLCONFIGDIR"] = os.getcwd() + "/configs/"

st.set_page_config("Correction", page_icon=":eye:", layout="wide")

try:
    AVAILABLE_FONTS = st.session_state["AVAILABLE_FONTS"] = AVAILABLE_FONTS
except:
    AVAILABLE_FONTS = [x.name for x in font_manager.fontManager.ttflist]


if "Consolas" in AVAILABLE_FONTS:
    FONT_INDEX = AVAILABLE_FONTS.index("Consolas")
elif "Courier New" in AVAILABLE_FONTS:
    FONT_INDEX = AVAILABLE_FONTS.index("Courier New")
elif "DejaVu Sans Mono" in AVAILABLE_FONTS:
    FONT_INDEX = AVAILABLE_FONTS.index("DejaVu Sans Mono")
else:
    FONT_INDEX = 0
DEFAULT_PLOT_FONT = "DejaVu Sans Mono"
EXAMPLES_FOLDER = "./testfiles/"
EXAMPLES_ASC_ZIP_FILENAME = "asc_files.zip"
OSF_DOWNLAOD_LINK = "https://osf.io/download/us97f/"
EXAMPLES_FOLDER_PATH = pl.Path(EXAMPLES_FOLDER)

EXAMPLE_CUSTOM_CSV_FILE = EXAMPLES_FOLDER_PATH / "ABREV13_trial_id_E1I21D0_fixations.csv"
EXAMPLE_CUSTOM_JSON_FILE = EXAMPLES_FOLDER_PATH / "ABREV13_trial_id_E1I21D0_trial.json"

UNZIPPED_FOLDER = pl.Path("unzipped")

TEMP_FIGURE_STIMULUS_PATH = PLOTS_FOLDER.joinpath("temp_matplotlib_plot_stimulus.png")
ut.make_folders(RESULTS_FOLDER, UNZIPPED_FOLDER, PLOTS_FOLDER)


@st.cache_data
def get_classic_cfg(filename):
    with open(filename, "r") as f:
        jsonsstring = f.read()
    classic_algos_cfg = json.loads(jsonsstring)
    classic_algos_cfg["slice"] = classic_algos_cfg["slice"]
    classic_algos_cfg = classic_algos_cfg
    return classic_algos_cfg


CLASSIC_ALGOS_CFGS = get_classic_cfg("algo_cfgs_all.json")

DIST_MODELS_FOLDER = st.session_state["DIST_MODELS_FOLDER"] = pl.Path("models")
STIM_FIX_PLOT_OPTIONS = [
    "Uncorrected Fixations",
    "Corrected Fixations",
    "Word boxes",
    "Characters",
    "Character boxes",
]
ALGO_CHOICES = [
    "warp",
    "regress",
    "compare",
    "attach",
    "segment",
    "split",
    "stretch",
    "chain",
    "slice",
    "cluster",
    "merge",
    "Wisdom_of_Crowds",
    "DIST",
    "DIST-Ensemble",
    "Wisdom_of_Crowds_with_DIST",
    "Wisdom_of_Crowds_with_DIST_Ensemble",
]

DEFAULT_ALGO_CHOICE = ["slice", "DIST"]
START_KEYWORD_OPTIONS = ["SYNCTIME", "START", "GAZE TARGET ON", "custom"]
END_KEYWORD_OPTIONS = ["ENDBUTTON", "END", "KEYBOARD", "custom"]
ALL_MEASURES_OWN = [
    "blink",
    "first_of_many_duration",
    "firstfix_cland",
    "firstfix_dur",
    "firstfix_land",
    "firstfix_launch",
    "firstfix_sac_in",
    "firstfix_sac_out",
    "firstrun_blink",
    "firstrun_dur",
    "firstrun_gopast",
    "firstrun_gopast_sel",
    "firstrun_nfix",
    "firstrun_refix",
    "firstrun_reg_in",
    "firstrun_reg_out",
    "firstrun_skip",
    "gopast",
    "gopast_sel",
    "initial_landing_distance",
    "initial_landing_position",
    "landing_distances",
    "nrun",
    "number_of_fixations",
    "number_of_regressions_in",
    "refix",
    "skip",
    "reg_in",
    "reg_out",
    "reread",
    "second_pass_duration",
    "singlefix",
    "singlefix_cland",
    "singlefix_dur",
    "singlefix_land",
    "singlefix_launch",
    "singlefix_sac_in",
    "singlefix_sac_out",
    "total_fixation_duration",
]
DEFAULT_WORD_MEASURES = [
    "firstrun_dur",
    "firstrun_nfix",
    "firstfix_dur",
    "singlefix_dur",
    "total_fixation_duration",
    "firstrun_gopast",
    "skip",
    "reg_in",
    "reg_out",
    "number_of_fixations",
    "number_of_regressions_in",  # TODO Check why it does not always agree with reg_in
]

ALL_SENT_MEASURES = [
    "on_sentence_num",
    "on_sentence",
    "num_words_in_sentence",
    "skip",
    "nrun",
    "reread",
    "reg_in",
    "reg_out",
    "total_n_fixations",
    "total_dur",
    "rate",
    "gopast",
    "gopast_sel",
    "firstrun_skip",
    "firstrun_reg_in",
    "firstrun_reg_out",
    "firstpass_n_fixations",
    "firstpass_dur",
    "firstpass_forward_n_fixations",
    "firstpass_forward_dur",
    "firstpass_reread_n_fixations",
    "firstpass_reread_dur",
    "lookback_n_fixations",
    "lookback_dur",
    "lookfrom_n_fixations",
    "lookfrom_dur",
]
DEFAULT_SENT_MEASURES = ["on_sentence_num", "on_sentence", "num_words_in_sentence", "total_n_fixations", "total_dur"]

COLNAMES_CUSTOM_CSV_FIX = {
    "x_col_name_fix": "x",
    "y_col_name_fix": "y",
    "x_col_name_fix_stim": "char_x_center",
    "x_start_col_name_fix_stim": "char_xmin",
    "x_end_col_name_fix_stim": "char_xmax",
    "y_col_name_fix_stim": "char_y_center",
    "y_start_col_name_fix_stim": "char_ymin",
    "y_end_col_name_fix_stim": "char_ymax",
    "char_col_name_fix_stim": "char",
    "trial_id_col_name_fix": "trial_id",
    "trial_id_col_name_stim": "trial_id",
    "subject_col_name_fix": "subject",
    "line_num_col_name_stim": "assigned_line",
    "time_start_col_name_fix": "start",
    "time_stop_col_name_fix": "stop",
}

COLNAME_CANDIDATES_CUSTOM_CSV_FIX = {
    "x_col_name_fix": ["x", "xs"],
    "y_col_name_fix": ["y", "ys"],
    "trial_id_col_name_fix": ["trial_id", "trialid", "trial", "trial_num", "id"],
    "subject_col_name_fix": ["subject", "sub", "subid", "sub_id"],
    "time_start_col_name_fix": ["start", "start_time", "ts", "t_start", "starttime"],
    "time_stop_col_name_fix": ["stop", "stop_time", "te", "t_end", "t_stop", "stoptime"],
}
COLNAME_CANDIDATES_CUSTOM_CSV_FIX_DEFAULT = {k: v[0] for k, v in COLNAME_CANDIDATES_CUSTOM_CSV_FIX.items()}

COLNAMES_CUSTOM_CSV_STIM = {
    "x_col_name_fix_stim": ["char_x_center", "xm"],
    "x_start_col_name_fix_stim": ["char_xmin", "xs", "xstart", "xmin"],
    "x_end_col_name_fix_stim": ["char_xmax", "xe", "xend", "xstop", "xmax"],
    "y_col_name_fix_stim": ["char_y_center", "ym"],
    "y_start_col_name_fix_stim": ["char_ymin", "ys", "ystart", "ymin"],
    "y_end_col_name_fix_stim": ["char_ymax", "ye", "yend", "ystop", "ymax"],
    "char_col_name_fix_stim": ["char", "letter", "let", "character"],
    "trial_id_col_name_stim": ["trial_id", "trialid", "trial", "trial_num", "id"],
    "line_num_col_name_stim": ["assigned_line", "line"],
}
COLNAMES_CUSTOM_CSV_STIM_DEFAULT = {k: v[0] for k, v in COLNAMES_CUSTOM_CSV_STIM.items()}
FIX_COL_NAMES_FOR_SEARCH = [
    "x",
    "y",
    "start_time",
    "end_time",
    "stop_time",
    "line",
    "subject",
    "trialid",
    "fixid",
    "fixnum",
    "fixation_number",
    "num",
]
STIM_COL_NAMES_FOR_SEARCH = [
    "xmin",
    "xmax",
    "ymin",
    "ymax",
    "xcenter",
    "ycenter",
    "char",
    "line",
    "subject",
    "trialid",
    "num",
]

SHORT_FIX_CLEAN_OPTIONS = ["Merge", "Merge then discard", "Discard", "Leave unchanged"]
DEFAULT_LONG_FIX_THRESHOLD = 800
DEFAULT_MERGE_DISTANCE_THRESHOLD = 1

if "results" not in st.session_state:
    st.session_state["results"] = {}


@st.cache_resource
def create_logger(name, level="DEBUG", file=None):
    logger = logging.getLogger(name)
    logger.propagate = False
    logger.setLevel(level)
    if sum([isinstance(handler, logging.StreamHandler) for handler in logger.handlers]) == 0:
        ch = logging.StreamHandler()
        ch.setFormatter(
            logging.Formatter(
                "%(asctime)s-{%(filename)s:%(lineno)d}-%(levelname)s >>> %(message)s",
                "%m-%d %H:%M:%S",
            )
        )
        logger.addHandler(ch)
    if file is not None:
        if sum([isinstance(handler, logging.FileHandler) for handler in logger.handlers]) == 0:
            ch = logging.FileHandler(file, "a")
            ch.setFormatter(
                logging.Formatter(
                    "%(asctime)s-{%(filename)s:%(lineno)d}-%(levelname)s >>> %(message)s",
                    "%m-%d %H:%M:%S",
                )
            )
            logger.addHandler(ch)
    logger.debug("Logger added")
    return logger


if "logger" not in st.session_state:
    st.session_state["logger"] = create_logger(name="app", level="DEBUG", file="log_for_app.log")


def add_fonts(font_dirs=["fonts"]):
    try:
        font_files = font_manager.findSystemFonts(fontpaths=font_dirs)
        if len(font_files) > 0:
            for font_file in font_files:
                font_manager.fontManager.addfont(font_file)
            st.session_state["logger"].info(f"done importing font_files {font_files}")
            st.session_state["fonts imported"] = font_files
    except Exception as e:
        st.session_state["logger"].warning(f"Adding fonts failed for {font_dirs}, please add font files to ./fonts")
        st.session_state["logger"].warning(e)
        st.session_state["fonts imported"] = None


pl.Path("fonts").mkdir(exist_ok=True)
if "fonts imported" not in st.session_state or st.session_state["fonts imported"] is None:
    add_fonts(font_dirs=["fonts"])


@st.cache_data
def download_example_ascs(EXAMPLES_FOLDER, EXAMPLES_ASC_ZIP_FILENAME, OSF_DOWNLAOD_LINK, EXAMPLES_FOLDER_PATH):
    return ut.download_example_ascs(EXAMPLES_FOLDER, EXAMPLES_ASC_ZIP_FILENAME, OSF_DOWNLAOD_LINK, EXAMPLES_FOLDER_PATH)


EXAMPLE_ASC_FILES = download_example_ascs(
    EXAMPLES_FOLDER, EXAMPLES_ASC_ZIP_FILENAME, OSF_DOWNLAOD_LINK, EXAMPLES_FOLDER_PATH
)


@st.cache_data
def unzip_testfiles(folderpath):
    for f in folderpath.glob("*.zip"):
        with zipfile.ZipFile(f, "r") as zip_ref:
            zip_ref.extractall(EXAMPLES_FOLDER)
    return list(folderpath.glob("*.asc"))


EXAMPLE_ASC_FILES = unzip_testfiles(EXAMPLES_FOLDER_PATH)

matplotlib_plot_df = st.cache_data(matplotlib_plot_df)


def in_st_nn(name):
    if name in st.session_state and st.session_state[name] is not None:
        return True
    else:
        return False


plotly_plot_with_image = st.cache_data(ut.plotly_plot_with_image)
plot_y_corr = st.cache_data(ut.plot_y_corr)
plot_fix_measure = st.cache_data(ut.plot_fix_measure)


def save_to_zips(folder, pattern, savename, delete_after_zip=False, required_string: str = None):
    if os.path.exists(RESULTS_FOLDER.joinpath(savename)):
        mode = "a"
    else:
        mode = "w"
    with zipfile.ZipFile(RESULTS_FOLDER.joinpath(savename), mode=mode) as archive:
        for idx, f in enumerate(folder.glob(pattern)):
            if (required_string is None or required_string in str(f)) and f.stem not in [
                pl.Path(x).stem for x in archive.namelist()
            ]:
                archive.write(f)
                if delete_after_zip:
                    try:
                        os.remove(f)
                    except Exception as e:
                        st.session_state["logger"].warning(e)
                        st.session_state["logger"].warning(f"Failed to delete {f}")
            if idx == 1:
                mode = "a"
    st.session_state["logger"].info(f"Done zipping for pattern {pattern}")


def call_subprocess(script_path, data):
    try:
        json_data_in = json.dumps(data)

        result = subprocess.run(["python", script_path], input=json_data_in, capture_output=True, text=True)
        st.session_state["logger"].info(f"Got result from call_subprocess with return code {result.returncode}")
        if result.stdout and "error" not in result.stdout[:9]:
            result_data = json.loads(result.stdout)
        else:
            if result.stdout:
                st.session_state["logger"].warning("Subprocess returned error")
                st.session_state["logger"].warning(result.stdout)
            result_data = None
        if isinstance(result_data, dict) and "error" in result_data:
            st.session_state["logger"].warning(f"Subprocess returned error:\n---\n{result_data['error']}")
            result_data = None

        return result_data
    except Exception as e:
        st.session_state["logger"].warning(e)
        return None


def key_val_to_dataframe(obj):
    if isinstance(obj, list) and len(obj) > 0 and isinstance(obj[0], dict):
        try:
            df = pd.DataFrame(obj)
        except Exception as e:
            return obj
        return df
    else:
        return obj


def trial_vals_to_dfs(trial):
    trial2 = {}
    for k, v in trial.items():
        if "list" in k:
            trial2[k] = v
        elif "_df" in k:
            trial2[k] = pd.DataFrame(v)
        else:
            trial2[k] = key_val_to_dataframe(v)
    return trial2


def process_all_asc_files(
    asc_files,
    algo_choice_multi_asc,
    ias_files,
    close_gap_between_words,
    trial_start_keyword,
    end_trial_at_keyword,
    paragraph_trials_only,
    choice_handle_short_and_close_fix,
    discard_fixations_without_sfix,
    discard_far_out_of_text_fix,
    x_thres_in_chars,
    y_thresh_in_heights,
    short_fix_threshold,
    merge_distance_threshold: float,
    discard_long_fix: bool,
    discard_long_fix_threshold: int,
    discard_blinks: bool,
    measures_to_calculate_multi_asc: list,
    include_coords_multi_asc: bool,
    sent_measures_to_calculate_multi_asc: list,
    use_multiprocessing: bool,
    fix_cols_to_add_multi_asc: list,
    save_files_for_each_trial_individually: bool,
):
    asc_files_to_do = get_asc_filelist(asc_files)
    if len(asc_files_to_do) > 0:

        zipfiles_with_results = []
        asc_files_for_log = [a.name if hasattr(a, "name") else a for a in asc_files]
        st.session_state["logger"].info(f"found asc_files {asc_files_for_log}")

        all_fix_dfs_list = []
        all_sacc_dfs_list = []
        all_chars_dfs_list = []
        all_words_dfs_list = []
        all_sentence_dfs_list = []
        asc_files_so_far = []
        all_trials_by_subj = {}
        list_of_trial_lists = []
        list_of_lines = []
        total_num_trials = 0
        for asc_file in stqdm(asc_files_to_do, desc="Processing .asc files"):
            st.session_state["asc_file"] = asc_file
            if hasattr(asc_file, "name"):
                asc_file_stem = pl.Path(asc_file.name).stem
            else:
                asc_file_stem = pl.Path(asc_file).stem
            asc_files_so_far.append(asc_file_stem)
            st.session_state["logger"].info(f"processing asc_file {asc_file_stem}")
            trial_choices_single_asc, trials_by_ids, lines, asc_file, trials_dict = ut.get_trials_list(
                asc_file,
                close_gap_between_words=close_gap_between_words,
                ias_files=ias_files,
                trial_start_keyword=trial_start_keyword,
                end_trial_at_keyword=end_trial_at_keyword,
                paragraph_trials_only=paragraph_trials_only,
            )

            st.session_state["logger"].info(f"Found {len(trials_by_ids)} trials in {asc_file_stem}.")
            st.info(f"Found {len(trials_by_ids)} trials in {asc_file_stem}.")
            if len(trials_by_ids) > 0:
                total_num_trials += len(trials_by_ids)
                list_of_trial_lists.append(trials_by_ids)
                list_of_lines.append(lines)
                savestring = "-".join([f for f in asc_files_so_far])[:100]
                all_trials_by_subj[asc_file_stem] = {
                    "questions_summary": trials_dict["overall_question_answer_value_counts"],
                    "questions_summary_percentage": trials_dict["overall_question_answer_value_counts_normed"],
                }
            else:
                st.info(f"No trials found in {asc_file_stem}. Skipping file.")
                continue

            for trial_id, trial in trials_by_ids.items():
                trial_start_idx, trial_end_idx = trial["trial_start_idx"] + 1, trial["trial_end_idx"]
                trial_lines = lines[trial_start_idx : trial_end_idx + 1]
                trial["trial_lines"] = trial_lines
            models_dict = {}
            if use_multiprocessing:
                st.session_state["logger"].info("Using multiprocessing")
                args = (
                    algo_choice_multi_asc,
                    choice_handle_short_and_close_fix,
                    discard_fixations_without_sfix,
                    discard_far_out_of_text_fix,
                    x_thres_in_chars,
                    y_thresh_in_heights,
                    short_fix_threshold,
                    merge_distance_threshold,
                    discard_long_fix,
                    discard_long_fix_threshold,
                    discard_blinks,
                    measures_to_calculate_multi_asc,
                    include_coords_multi_asc,
                    sent_measures_to_calculate_multi_asc,
                    trials_by_ids,
                    CLASSIC_ALGOS_CFGS,
                    models_dict,
                    fix_cols_to_add_multi_asc,
                )
                out2 = call_subprocess("process_asc_files_in_multi_p.py", args)
                if out2 is None:
                    st.session_state["logger"].warning("Multiprocessing failed, falling back on single process")
                    out = out2
                else:
                    st.session_state["logger"].info(
                        f"Multiprocessing produced output of type {type(out2)} with length {len(out2)}"
                    )
                    out = []
                    for dffix, trial in out2:
                        dffix = pd.DataFrame(dffix)
                        trial = trial_vals_to_dfs(trial)
                        out.append((dffix, trial))

            if not use_multiprocessing or out is None:
                if (
                    "DIST" in algo_choice_multi_asc
                    or "Wisdom_of_Crowds_with_DIST" in algo_choice_multi_asc
                    or "DIST-Ensemble" in algo_choice_multi_asc
                    or "Wisdom_of_Crowds_with_DIST_Ensemble" in algo_choice_multi_asc
                ):
                    models_dict = set_up_models(DIST_MODELS_FOLDER)
                dffixs = []
                trials = []
                for trial_id, trial in stqdm(trials_by_ids.items(), desc=f"\nProcessing trials in {asc_file_stem}"):
                    dffix, trial = process_trial_choice(
                        trial,
                        algo_choice_multi_asc,
                        choice_handle_short_and_close_fix,
                        True,
                        discard_fixations_without_sfix,
                        discard_far_out_of_text_fix,
                        x_thres_in_chars,
                        y_thresh_in_heights,
                        short_fix_threshold,
                        merge_distance_threshold,
                        discard_long_fix,
                        discard_long_fix_threshold,
                        discard_blinks,
                        measures_to_calculate_multi_asc,
                        include_coords_multi_asc,
                        sent_measures_to_calculate_multi_asc,
                        CLASSIC_ALGOS_CFGS,
                        models_dict,
                        fix_cols_to_add_multi_asc,
                    )
                    dffixs.append(dffix.copy())
                    trials.append(trial)
                out = zip(dffixs, trials)
            for dffix, trial in stqdm(out, desc=f"Aggregating results for file {asc_file_stem}"):
                if dffix.shape[0] < 2:
                    st.warning(
                        f"trial {trial_id} for file {asc_file_stem} failed because fixation dataframe only had {dffix.shape[0]} fixation after processing."
                    )
                    st.session_state["logger"].warning(
                        f"trial {trial_id} for file {asc_file_stem} failed because fixation dataframe only had {dffix.shape[0]} fixation after processing."
                    )
                    continue
                fix_cols_to_keep = [
                    c
                    for c in dffix.columns
                    if (
                        (
                            any([lname in c for lname in ALL_FIX_MEASURES])
                            and any([lname in c for lname in fix_cols_to_add_multi_asc])
                        )
                        or (not any([lname in c for lname in ALL_FIX_MEASURES]))
                    )
                ]
                dffix = dffix.loc[:, fix_cols_to_keep].copy()
                trial_id = trial["trial_id"]
                saccade_df = pd.DataFrame(trial["saccade_df"])
                chars_df = pd.DataFrame(trial["chars_df"])
                trial_for_comb = pop_large_trial_entries(all_trials_by_subj, asc_file_stem, trial_id, trial)
                if "words_list" in trial:
                    if "own_word_measures_dfs_for_algo" in trial:
                        words_df = trial.pop("own_word_measures_dfs_for_algo")
                    else:
                        words_df = pd.DataFrame(trial["words_list"])
                else:
                    words_df = None
                if "own_sentence_measures_dfs_for_algo" in trial:
                    sent_measures_multi = trial["own_sentence_measures_dfs_for_algo"]
                else:
                    sent_measures_multi = None

                if "subject" in trial:
                    add_cols_from_trial_info(
                        asc_file_stem, trial_id, trial, dffix, saccade_df, chars_df, words_df, sent_measures_multi
                    )

                st.session_state["results"][f"{asc_file_stem}_{trial_id}"] = {
                    "trial": trial,
                    "dffix": dffix.copy(),
                }
                all_fix_dfs_list.append(dffix)
                all_sacc_dfs_list.append(saccade_df)
                st.session_state["results"][f"{asc_file_stem}_{trial_id}"]["chars_df"] = chars_df
                all_chars_dfs_list.append(chars_df)
                if words_df is not None:
                    st.session_state["results"][f"{asc_file_stem}_{trial_id}"]["words_df"] = words_df
                    all_words_dfs_list.append(words_df)
                if sent_measures_multi is not None:
                    st.session_state["results"][f"{asc_file_stem}_{trial_id}"][
                        "sent_measures_multi"
                    ] = sent_measures_multi
                    all_sentence_dfs_list.append(sent_measures_multi)

                if save_files_for_each_trial_individually:
                    savename = RESULTS_FOLDER.joinpath(asc_file_stem)  # TODO save word_measures here?
                    csv_name = f"{savename}_{trial_id}_fixations_df.csv"
                    csv_name = export_dataframe(dffix, csv_name)
                    csv_name = f"{savename}_{trial_id}_saccade_df.csv"
                    csv_name = export_dataframe(pd.DataFrame(trial["saccade_df"]), csv_name)
                    export_trial(trial)
                    csv_name = f"{savename}_{trial_id}_stimulus_df.csv"
                    export_dataframe(pd.DataFrame(trial["chars_list"]), csv_name)
                    ut.save_trial_to_json(trial_for_comb, RESULTS_FOLDER.joinpath(f"{asc_file_stem}_{trial_id}.json"))

            if os.path.exists(RESULTS_FOLDER.joinpath(f"{asc_file_stem}.zip")):
                os.remove(RESULTS_FOLDER.joinpath(f"{asc_file_stem}.zip"))
            save_to_zips(RESULTS_FOLDER, f"*{asc_file_stem}*.csv", f"{asc_file_stem}.zip", delete_after_zip=True)
            save_to_zips(RESULTS_FOLDER, f"*{asc_file_stem}*.json", f"{asc_file_stem}.zip", delete_after_zip=True)
            save_to_zips(RESULTS_FOLDER, f"*{asc_file_stem}*.png", f"{asc_file_stem}.zip", delete_after_zip=True)
            zipfiles_with_results += [str(x) for x in RESULTS_FOLDER.glob(f"{asc_file_stem}*.zip")]
        if len(all_fix_dfs_list) == 0:
            st.warning("All .asc files failed")
            st.session_state["logger"].info("All .asc files failed")
            return None, None, None, None, None, None, None, None, None, None
        results_keys = list(st.session_state["results"].keys())
        st.session_state["logger"].info(f"results_keys are {results_keys}")
        all_fix_dfs_concat = pd.concat(all_fix_dfs_list, axis=0).reset_index(drop=True, allow_duplicates=True)
        droplist = ["num", "msg"]
        if discard_blinks:
            droplist += ["blink", "blink_before", "blink_after"]
        for col in droplist:
            if col in all_fix_dfs_concat.columns:
                all_fix_dfs_concat = all_fix_dfs_concat.drop(col, axis=1)
        all_sacc_dfs_concat = pd.concat(all_sacc_dfs_list, axis=0).reset_index(drop=True, allow_duplicates=True)
        all_chars_dfs_concat = pd.concat(all_chars_dfs_list, axis=0).reset_index(drop=True, allow_duplicates=True)
        if len(all_words_dfs_list) > 0:
            all_words_dfs_concat = pd.concat(all_words_dfs_list, axis=0).reset_index(drop=True, allow_duplicates=True)

            word_cols = [
                c
                for c in [
                    "word_xmin",
                    "word_xmax",
                    "word_ymax",
                    "word_xmin",
                    "word_ymin",
                    "word_x_center",
                    "word_y_center",
                ]
                if c in all_words_dfs_concat.columns
            ]
            all_words_dfs_concat = all_words_dfs_concat.drop(columns=word_cols)
        else:
            all_words_dfs_concat = pd.DataFrame()
        if len(all_sentence_dfs_list) > 0:
            all_sentence_dfs_concat = pd.concat(all_sentence_dfs_list, axis=0).reset_index(
                drop=True, allow_duplicates=True
            )
            # all_sentence_dfs_concat = all_sentence_dfs_concat.dropna(axis=0,how='any',subset=['sentence_number']) #TODO this should now be needed
        else:
            all_sentence_dfs_concat = pd.DataFrame()
        if not all_fix_dfs_concat.empty:
            savestring = "-".join(
                [pl.Path(f.name).stem if hasattr(f, "name") else pl.Path(str(f)).stem for f in asc_files_to_do]
            )[:100]
            correction_summary_df_all_multi, cleaning_summary_df_all_multi, trials_quick_meta_df = (
                get_summaries_from_trials(all_trials_by_subj)
            )
            correction_summary_df_all_multi = correction_summary_df_all_multi.merge(
                cleaning_summary_df_all_multi, on=["subject", "trial_id"]
            )
            if "question_correct" in all_words_dfs_concat.columns:
                all_words_dfs_concat["question_correct"] = all_words_dfs_concat["question_correct"].astype("boolean")
            trials_summary = pf.aggregate_trials(
                all_fix_dfs_concat, all_words_dfs_concat, all_trials_by_subj, algo_choice_multi_asc
            )
            trials_summary = trials_summary.drop(columns="subject_trialID")
            trials_summary = correction_summary_df_all_multi.merge(trials_summary, on=["subject", "trial_id"])
            trials_summary = reorder_columns(trials_summary, ["subject", "trial_id", "item", "condition"])
            trials_summary.to_csv(RESULTS_FOLDER / f"{savestring}_trials_summary.csv")
            subjects_summary = pf.aggregate_subjects(trials_summary, algo_choice_multi_asc)
            subjects_summary.to_csv(RESULTS_FOLDER / f"{savestring}_subjects_summary.csv")
            ut.save_trial_to_json(
                {
                    k_outer: {
                        k: {
                            prop: val
                            for prop, val in v.items()
                            if isinstance(val, (int, float, str, list, tuple, bool, dict))
                        }
                        for k, v in v_outer.items()
                    }
                    for k_outer, v_outer in all_trials_by_subj.items()
                },
                RESULTS_FOLDER / f"{savestring}_comb_metadata.json",
            )
            if "msg" in all_fix_dfs_concat.columns:
                all_fix_dfs_concat = all_fix_dfs_concat.drop(columns="msg")
            all_fix_dfs_concat = all_fix_dfs_concat.drop(columns="subject_trialID")
            all_fix_dfs_concat = reorder_columns(
                all_fix_dfs_concat,
                [
                    "subject",
                    "trial_id",
                    "item",
                    "condition",
                    "fixation_number",
                    "duration",
                    "start_uncorrected",
                    "stop_uncorrected",
                    "start_time",
                    "stop_time",
                    "corrected_start_time",
                    "corrected_end_time",
                ],
            )
            all_fix_dfs_concat.to_csv(RESULTS_FOLDER / f"{savestring}_comb_fixations.csv")
            if "msg" in all_sacc_dfs_concat.columns:
                all_sacc_dfs_concat = all_sacc_dfs_concat.drop(columns="msg")
            all_sacc_dfs_concat = reorder_columns(
                all_sacc_dfs_concat, ["subject", "trial_id", "item", "condition", "num"]
            )
            all_sacc_dfs_concat.to_csv(RESULTS_FOLDER / f"{savestring}_comb_saccades.csv")
            all_chars_dfs_concat.to_csv(RESULTS_FOLDER / f"{savestring}_comb_chars.csv")
            if not all_words_dfs_concat.empty:
                all_words_dfs_concat = all_words_dfs_concat.drop(columns="subject_trialID")
                all_words_dfs_concat.to_csv(RESULTS_FOLDER / f"{savestring}_comb_words.csv")
            if not all_sentence_dfs_concat.empty:
                all_sentence_dfs_concat = all_sentence_dfs_concat.drop(columns="subject_trialID")
                all_sentence_dfs_concat.to_csv(RESULTS_FOLDER / f"{savestring}_comb_sentences.csv")

            for asc_file_stem in asc_files_so_far:
                save_to_zips(
                    RESULTS_FOLDER,
                    f"*{asc_file_stem}*.csv",
                    f"{asc_file_stem}.zip",
                    delete_after_zip=False,
                    required_string="_comb",
                )
        else:
            trials_summary = None
            subjects_summary = None
    return (
        list_of_trial_lists,
        list_of_lines,
        results_keys,
        zipfiles_with_results,
        all_fix_dfs_concat,
        all_sacc_dfs_concat,
        all_chars_dfs_concat,
        all_words_dfs_concat,
        all_sentence_dfs_concat,
        all_trials_by_subj,
        trials_summary,
        subjects_summary,
        trials_quick_meta_df,
    )


def pop_large_trial_entries(all_trials_by_subj, asc_file_stem, trial_id, trial):
    trial_for_comb = copy.deepcopy(trial)
    trial_for_comb["line_heights"] = list(np.unique(trial_for_comb["line_heights"]))
    if "dffix_no_clean" in trial_for_comb:
        trial_for_comb.pop("dffix_no_clean")
    if "chars_list" in trial_for_comb:
        trial_for_comb.pop("chars_list")
    if "trial_lines" in trial_for_comb:
        trial_for_comb.pop("trial_lines")
    if "dffix" in trial_for_comb:
        trial_for_comb.pop("dffix")
    if "gaze_df" in trial_for_comb:
        trial_for_comb.pop("gaze_df")
    if "chars_df" in trial_for_comb:
        trial_for_comb.pop("chars_df")
    if "saccade_df" in trial_for_comb:
        trial_for_comb.pop("saccade_df")
    if "combined_df" in trial_for_comb:
        trial_for_comb.pop("combined_df")
    if "own_sentence_measures_dfs_for_algo" in trial_for_comb:
        trial_for_comb.pop("own_sentence_measures_dfs_for_algo")
    if "own_word_measures_dfs_for_algo" in trial_for_comb:
        trial_for_comb.pop("own_word_measures_dfs_for_algo")
    all_trials_by_subj[asc_file_stem][trial_id] = trial_for_comb
    return trial_for_comb


def add_cols_from_trial_info(
    asc_file_stem, trial_id, trial, dffix, saccade_df, chars_df, words_df, sent_measures_multi
):
    if "item" not in dffix.columns and "item" in trial:
        dffix.insert(loc=0, column="item", value=trial["item"])
    if "condition" not in dffix.columns and "condition" in trial:
        dffix.insert(loc=0, column="condition", value=trial["condition"])
    if "trial_id" not in dffix.columns and "trial_id" in trial:
        dffix.insert(loc=0, column="trial_id", value=trial["trial_id"])
    if "subject" not in dffix.columns and "subject" in trial:
        dffix.insert(loc=0, column="subject", value=trial["subject"])
    if "subject_trialID" not in dffix.columns:
        dffix.insert(loc=0, column="subject_trialID", value=f"{asc_file_stem}_{trial_id}")
    if "item" not in saccade_df.columns:
        saccade_df.insert(loc=0, column="item", value=trial["item"])
    if "condition" not in saccade_df.columns:
        saccade_df.insert(loc=0, column="condition", value=trial["condition"])
    if "trial_id" not in saccade_df.columns:
        saccade_df.insert(loc=0, column="trial_id", value=trial["trial_id"])
    if "subject" not in saccade_df.columns:
        saccade_df.insert(loc=0, column="subject", value=trial["subject"])
    if "item" not in chars_df.columns:
        chars_df.insert(loc=0, column="item", value=trial["item"])
    if "condition" not in chars_df.columns:
        chars_df.insert(loc=0, column="condition", value=trial["condition"])
    if "trial_id" not in chars_df.columns:
        chars_df.insert(loc=0, column="trial_id", value=trial["trial_id"])
    if "subject" not in chars_df.columns:
        chars_df.insert(loc=0, column="subject", value=trial["subject"])
    if words_df is not None:
        if "item" not in words_df.columns:
            words_df.insert(loc=0, column="item", value=trial["item"])
        if "condition" not in words_df.columns:
            words_df.insert(loc=0, column="condition", value=trial["condition"])
        if "trial_id" not in words_df.columns:
            words_df.insert(loc=0, column="trial_id", value=trial["trial_id"])
        if "subject" not in words_df.columns:
            words_df.insert(loc=0, column="subject", value=trial["subject"])
        if "subject_trialID" not in words_df.columns:
            words_df.insert(loc=0, column="subject_trialID", value=f"{asc_file_stem}_{trial_id}")
    if sent_measures_multi is not None:
        add_cols_from_trial(trial, sent_measures_multi, cols=["item", "condition", "trial_id", "subject"])


def get_asc_filelist(asc_files):
    files_in_unzipped_folder = UNZIPPED_FOLDER.rglob("*")

    for file_path in (path_object for path_object in files_in_unzipped_folder if path_object.is_file()):
        try:
            file_path.unlink()
        except PermissionError as e:
            st.session_state["logger"].warning(f"Failed to delete file from unzipped folder: {file_path}")
            st.session_state["logger"].warning(e)
    asc_files_to_do = []
    for filename_full in asc_files:
        if hasattr(filename_full, "name") and not isinstance(filename_full, pl.Path):
            file = filename_full.name
            st.session_state["logger"].info(f"Filename is {file}")
        else:
            file = filename_full
        if not isinstance(file, str):
            file_stem = pl.Path(file.name).stem
        else:
            file_stem = pl.Path(file).stem
        savefolder = UNZIPPED_FOLDER.joinpath(file_stem)
        st.session_state["logger"].info(f"Operating on file {file}")
        if ".zip" in file:
            with zipfile.ZipFile(filename_full, "r") as z:
                z.extractall(str(savefolder))
        elif ".tar" in file:
            shutil.unpack_archive(file, savefolder, "tar")
        elif ".asc" in file:
            asc_files_to_do.append(filename_full)
        else:
            st.session_state["logger"].warning(f"Unsopported file format found in files")
        newfiles = [str(x) for x in savefolder.glob(f"*.asc")]
        asc_files_to_do += newfiles
    return asc_files_to_do


@st.cache_data
def convert_df(df):
    return df.to_csv(index=False).encode("utf-8")


def make_trial_from_stimulus_df(
    stim_plot_df,
    filename,
    trial_id,
):
    chars_list = []
    words_list = []
    for idx, row in stim_plot_df.reset_index(drop=True).iterrows():
        char_dict = row.to_dict()
        chars_list.append(char_dict)

    words_list, chars_list = ut.add_words(chars_list)
    letter_width_avg = np.mean([x["char_xmax"] - x["char_xmin"] for x in chars_list if x["char_xmax"] > x["char_xmin"]])
    line_heights = [x["char_ymax"] - x["char_ymin"] for x in chars_list]
    line_xcoords_all = [x["char_x_center"] for x in chars_list]
    line_xcoords_no_pad = np.unique(line_xcoords_all)

    line_ycoords_all = [x["char_y_center"] for x in chars_list]
    line_ycoords_no_pad = np.unique(line_ycoords_all)

    trial = dict(
        filename=filename,
        y_midline=[float(x) for x in list(stim_plot_df["char_y_center"].unique())],
        num_char_lines=len(stim_plot_df["char_y_center"].unique()),
        y_diff=[float(x) for x in list(np.round(np.unique(np.diff(stim_plot_df["char_ymin"])), decimals=2))],
        trial_id=trial_id,
        chars_list=chars_list,
        words_list=words_list,
        trial_is="paragraph",
        text="".join([x["char"] for x in chars_list]),
    )

    trial["x_char_unique"] = [float(x) for x in list(line_xcoords_no_pad)]
    trial["y_char_unique"] = list(map(float, list(line_ycoords_no_pad)))
    x_diff, y_diff = ut.calc_xdiff_ydiff(
        line_xcoords_no_pad, line_ycoords_no_pad, line_heights, allow_multiple_values=False
    )
    trial["x_diff"] = float(x_diff)
    trial["y_diff"] = float(y_diff)
    trial["num_char_lines"] = len(line_ycoords_no_pad)
    trial["line_heights"] = list(map(float, line_heights))
    trial["letter_width_avg"] = letter_width_avg
    trial["chars_list"] = chars_list

    return trial


def get_fixations_file_trials_list(dffix, stimulus):
    if isinstance(stimulus, pd.DataFrame):
        mapper = {
            k: v
            for k, v in {
                st.session_state["x_col_name_fix_stim"]: "char_x_center",
                st.session_state["x_start_col_name_fix_stim"]: "char_xmin",
                st.session_state["x_end_col_name_fix_stim"]: "char_xmax",
                st.session_state["y_col_name_fix_stim"]: "char_y_center",
                st.session_state["y_start_col_name_fix_stim"]: "char_ymin",
                st.session_state["y_end_col_name_fix_stim"]: "char_ymax",
                st.session_state["char_col_name_fix_stim"]: "char",
                st.session_state["trial_id_col_name_stim"]: "trial_id",
                st.session_state["line_num_col_name_stim"]: "assigned_line",
            }.items()
            if v not in stimulus.columns
        }
        stimulus.rename(
            mapper=mapper,
            axis=1,
            inplace=True,
        )
        stimulus["assigned_line"] -= stimulus["assigned_line"].min()
    mapper = {
        k: v
        for k, v in {
            st.session_state["x_col_name_fix"]: "x",
            st.session_state["y_col_name_fix"]: "y",
            st.session_state["time_start_col_name_fix"]: "corrected_start_time",
            st.session_state["time_stop_col_name_fix"]: "corrected_end_time",
            st.session_state["trial_id_col_name_fix"]: "trial_id",
            st.session_state["subject_col_name_fix"]: "subject",
        }.items()
        if v not in dffix.columns
    }
    dffix.rename(
        mapper=mapper,
        axis=1,
        inplace=True,
    )
    dffix["duration"] = dffix.corrected_end_time - dffix.corrected_start_time
    if "trial_id" in stimulus and "trial_id" not in dffix.columns:
        dffix["trial_id"] = stimulus["trial_id"]
    if "trial_id" in dffix:
        if "subject" in dffix.columns and len(dffix["subject"].unique()) > 1:
            dffix["subject_trialID"] = [f"{id}_{num}" for id, num in zip(dffix["subject"], dffix["trial_id"])]
            enum = dffix.groupby("subject_trialID")
            if "subject" in stimulus.columns:
                stimulus["subject_trialID"] = [
                    f"{id}_{num}" for id, num in zip(stimulus["subject"], stimulus["trial_id"])
                ]
            else:
                stimulus["subject_trialID"] = stimulus["trial_id"]
            trial_keys = list(dffix["subject_trialID"].unique())
        else:
            enum = dffix.groupby("trial_id")
            trial_keys = list(dffix["trial_id"].unique())
        st.session_state["logger"].info(f"Found keys {trial_keys} for {st.session_state['single_csv_file'].name}")
    else:
        enum = dffix.groupby("trial_id")
        st.session_state["logger"].warning(f"trial id column not found assigning trial id trial_0.")
        st.warning(f"trial id column not found assigning trial id trial_0.")
        dffix["trial_id"] = "trial_0"
    st.session_state["fixations_df"] = dffix
    trials_by_ids = {}
    for trial_id, subdf in stqdm(enum, desc="Creating trials"):
        if isinstance(stimulus, pd.DataFrame):
            stim_df = stimulus[stimulus.trial_id == subdf["trial_id"].iloc[0]]

            stim_df = stim_df.dropna(axis=0, how="all")
            subdf = subdf.dropna(axis=0, how="all")
            stim_df = stim_df.dropna(axis=1, how="all")
            subdf = subdf.dropna(axis=1, how="all")
            if subdf.empty:
                continue
            subdf = subdf.reset_index(drop=True).copy()
            stim_df = stim_df.reset_index(drop=True).copy()
            assert not stim_df.empty, "stimulus df is empty"
            trial = make_trial_from_stimulus_df(
                stim_df,
                st.session_state["single_csv_file_stim"].name,
                trial_id,
            )
        else:
            if "trial_id" in stimulus.keys() and (
                isinstance(stimulus["trial_id"], dict) or isinstance(stimulus["trial_id"], pd.DataFrame)
            ):
                trial = stimulus["trial_id"]
            else:
                trial = stimulus
        chars_df = pd.DataFrame(trial["chars_list"])  # TODO look into making this more flexible if words are provided
        subdf["fixation_number"] = np.arange(subdf.shape[0], dtype=int)
        subdf["trial_id"] = trial_id
        trial["dffix"] = subdf
        if "filename" not in trial:
            trial["filename"] = f"{trial_id}"
        if "subject" not in trial:
            trial["subject"] = pl.Path(trial["filename"]).stem
        if "subject" not in dffix.columns:
            dffix["subject"] = trial["subject"]
        trial["letter_width_avg"] = (chars_df["char_xmax"] - chars_df["char_xmin"]).mean()
        trial["plot_file"] = str(PLOTS_FOLDER.joinpath(f"{trial_id}_2ndInput_chars_channel_sep.png"))
        trials_by_ids[trial_id] = trial

    return trials_by_ids, trial_keys


def load_csv_delim_agnostic(file_path):
    try:
        df = pd.read_csv(file_path)
        if df.shape[1] > 1:
            return df
        else:
            dec_file = get_decoded_input_from_file(file_path)
            df = pd.read_csv(StringIO(dec_file.replace(";", ",").replace("\t", ",")))
            return df
    except Exception as e:
        dec_file = get_decoded_input_from_file(file_path)
        df = pd.read_csv(StringIO(dec_file.replace(";", ",").replace("\t", ",")))
        return df


def find_col_name_suggestions(cols, candidates_dict):
    scores_lists = []
    for k, v in candidates_dict.items():
        for word in cols:
            for candidate in v:
                resdict = {
                    "category": k,
                    "word_in_df": word,
                    "candidate": candidate,
                    "score": jf.levenshtein_distance(candidate, word),
                }
                scores_lists.append(resdict)
    scores_df = pd.DataFrame(scores_lists)
    scores_df.groupby(["category", "candidate"])["score"].min()
    mappings = {}
    for _, row in scores_df.loc[scores_df.groupby(["category"])["score"].idxmin(), :].iterrows():
        mappings[row["category"]] = row["word_in_df"]

    return mappings


def get_decoded_input_from_file(file):
    for enc in ["ISO-8859-1", "utf-8"]:
        try:
            decoded_input = file.getvalue().decode(enc)
        except Exception as e:
            st.session_state["logger"].warning(e)
            st.session_state["logger"].warning(f"File decoding failed using {enc}")
    return decoded_input


def get_eyekit_measures(_txt, _seq, trial, get_char_measures=False):
    return ekm.get_eyekit_measures(_txt, _seq, trial, get_char_measures=get_char_measures)


get_all_measures = st.cache_data(get_all_measures)

compute_sentence_measures = st.cache_data(pf.compute_sentence_measures)
get_fix_seq_and_text_block = st.cache_data(ekm.get_fix_seq_and_text_block)
eyekit_plot = st.cache_data(ekm.eyekit_plot)


def filter_trial_for_export(trial):
    trial = copy.deepcopy(trial)
    _ = [trial.pop(k) for k in list(trial.keys()) if isinstance(trial[k], (pd.DataFrame, np.ndarray))]
    _ = [
        trial.pop(k)
        for k in list(trial.keys())
        if k
        in [
            "words_list",
            "chars_list",
            "chars_df_alt",
            "EMReading_fix",
            "chars_df",
            "dffix_sacdf_popEye",
            "fixdf_popEye",
            "sacdf_popEye",
            "saccade_df",
            "combined_df",
            "gaze_df",
            "dffix",
        ]
    ]
    if "line_heights" in trial:
        trial["line_heights"] = list(np.unique(trial["line_heights"]))
    return trial


def check_for_32bit_dtypes(x):
    if np.issubdtype(type(x), np.number) and int(x) == x and not isinstance(x, bool):
        return int(x)
    if np.issubdtype(type(x), np.number) and float(x) == x and not isinstance(x, bool):
        return float(x)
    return x


def process_trial_choice_single_csv(trial, algo_choice, models_dict, file=None):
    words_df = pd.DataFrame(trial["words_list"])
    words_df["word_number"] = np.arange(words_df.shape[0])
    trial["words_list"] = words_df.to_dict(orient="records")
    if "subject" not in trial:
        if "filename" in trial:
            trial["subject"] = pl.Path(trial["filename"]).stem
        else:
            trial["subject"] = ""
    if "item" not in trial:
        trial["item"] = None
    if "condition" not in trial:
        trial["condition"] = None
    trial_id = trial["trial_id"]
    if "dffix" in trial:
        dffix = trial["dffix"]
    else:
        fname = pl.Path(str(file.name)).stem
        trial["plot_file"] = str(PLOTS_FOLDER.joinpath(f"{fname}_{trial_id}_2ndInput_chars_channel_sep.png"))
        trial["filename"] = fname
        dffix = trial["dffix"] = st.session_state["trials_by_ids_single_csv"][trial_id]["dffix"]
    if "item" not in dffix.columns and "item" in trial:
        dffix.insert(loc=0, column="item", value=trial["item"])
    if "condition" not in dffix.columns and "condition" in trial:
        dffix.insert(loc=0, column="condition", value=trial["condition"])
    if "subject" not in dffix.columns and "subject" in trial:
        dffix.insert(loc=0, column="subject", value=trial["subject"])
    if "blink" not in dffix.columns:
        dffix["blink"] = False
    font, font_size, dpi, screen_res = get_plot_props(trial, AVAILABLE_FONTS)
    trial["font"] = font
    trial["font_size"] = font_size
    trial["dpi"] = dpi
    trial["screen_res"] = screen_res
    if "chars_list" in trial:
        words_list, chars_list_reconstructed = ut.add_words(trial["chars_list"])
        chars_df = pd.DataFrame(chars_list_reconstructed)
        chars_df = add_popEye_cols_to_chars_df(chars_df)
        trial["chars_df"] = chars_df.to_dict()
        trial["chars_list"] = chars_df.to_dict("records")
        trial["y_char_unique"] = list(chars_df.char_y_center.sort_values().unique())

    if algo_choice is not None:
        dffix = correct_df(
            dffix,
            algo_choice,
            trial,
            for_multi=False,
            is_outside_of_streamlit=False,
            classic_algos_cfg=CLASSIC_ALGOS_CFGS,
            models_dict=models_dict,
        )
    return dffix, trial, dpi, screen_res, font, font_size


def main():
    if "models_dict" not in st.session_state:
        set_up_models_out = set_up_models(DIST_MODELS_FOLDER)
        st.session_state["models_dict"] = set_up_models_out

    st.title("Fixation data processing and analysis")
    st.markdown(
        "[Contact Us](mailto:[email protected])  &emsp;  [Read about DIST model](https://doi.org/10.1109/TPAMI.2024.3411938)"
    )

    single_file_tab, multi_file_tab = st.tabs(["Single File 📁", "Multiple Files 📁 📁"])

    single_file_tab_asc_tab, single_file_tab_csv_tab = single_file_tab.tabs([".asc files", "custom files"])

    settings_to_save = {
        k.replace("_single_asc", ""): check_for_32bit_dtypes(v)
        for (k, v) in st.session_state.items()
        if k
        in [
            "trial_start_keyword_single_asc",
            "trial_end_keyword_single_asc",
            "close_gap_between_words_single_asc",
            "paragraph_trials_only_single_asc",
            "discard_fixations_without_sfix_single_asc",
            "discard_far_out_of_text_fix_single_asc",
            "discard_blinks_fix_single_asc",
            "outlier_crit_x_threshold_single_asc",
            "outlier_crit_y_threshold_single_asc",
            "discard_long_fix_single_asc",
            "discard_long_fix_threshold_single_asc",
            "choice_handle_short_and_close_fix_single_asc",
            "merge_distance_threshold_single_asc",
            "algo_choice_single_asc",
            "measures_to_calculate_single_asc",
            "font_face_for_eyekit_single_asc",
            "y_txt_start_for_eyekit_single_asc",
            "x_txt_start_for_eyekit_single_asc",
            "font_size_for_eyekit_single_asc",
            "include_word_coords_in_output_single_asc",
            "fix_cols_to_add_single_asc",
            "sent_measures_to_calculate_single_asc",
        ]
    }
    if len(settings_to_save) > 0:
        single_file_tab_asc_tab.download_button(
            "⏬ Download all single .asc file settings as JSON",
            json.dumps(settings_to_save),
            "settings_to_save.json",
            "json",
            key="download_settings_to_save",
            help="Can be used to reload settings later or to use them for multi .asc file processing.",
        )
    with single_file_tab_asc_tab.expander("Load config file"):
        with st.form("single_file_tab_asc_tab_load_settings_from_file_form"):
            st.file_uploader(
                "Select .json config file to reload a previous processing configuration",
                accept_multiple_files=False,
                key="single_asc_file_settings_file_uploaded",
                type=["json"],
                help="Load in a configuration file as .json to reproduce previous processing and analysis.",
            )
            cfg_load_btn_single_asc = st.form_submit_button("Load in config")
    if cfg_load_btn_single_asc and in_st_nn("single_asc_file_settings_file_uploaded"):
        if "saccade_df" in st.session_state:
            del st.session_state["saccade_df"]
        if "dffix_single_asc" in st.session_state:
            del st.session_state["dffix_single_asc"]
        if "own_word_measures_single_asc" in st.session_state:
            del st.session_state["own_word_measures_single_asc"]
        if "dffix_cleaned_single_asc" in st.session_state:
            del st.session_state["dffix_cleaned_single_asc"]
        json_string = st.session_state["single_asc_file_settings_file_uploaded"].getvalue().decode("utf-8")
        st.session_state["loaded_settings_single_asc"] = {
            f"{k}_single_asc": v for k, v in json.loads(json_string).items()
        }
        st.session_state["_loaded_settings_single_asc"] = {
            f"_{k}_single_asc": v for k, v in json.loads(json_string).items()
        }
        st.session_state.update(st.session_state["loaded_settings_single_asc"])
        st.session_state.update(st.session_state["_loaded_settings_single_asc"])

    with single_file_tab_asc_tab.form("single_file_tab_asc_tab_load_example_form"):
        st.markdown("### File selection")
        file_upload_col_single_asc, ex_file_sel_col_single_asc = st.columns(2)
        with file_upload_col_single_asc:
            st.file_uploader(
                "Upload a single .asc file",
                accept_multiple_files=False,
                key="single_asc_uploaded_file",
                type=["asc"],
                help="Drag and drop or select a single .asc file that you wish to process. This can be left blank if you chose to use the examples.",
            )
            st.file_uploader(
                "Upload all .ias files associated with the .asc file. Leave empty if you don't use .ias files.",
                accept_multiple_files=True,
                key="single_asc_file_ias_files_uploaded",
                type=["ias"],
                help="If the stimulus information is not part of the .asc file then all .ias files associated with your file should be put here. This will allow the program to align each trial found in the .asc file with the correct stimulus text by finding the .ias filename in the .asc file (Needs to be flagged with 'IAREA FILE').",
            )
        with ex_file_sel_col_single_asc:
            if len(EXAMPLE_ASC_FILES) > 0 and os.path.isfile(EXAMPLE_ASC_FILES[0]):
                st.selectbox(
                    "Select which example file to use",
                    options=EXAMPLE_ASC_FILES,
                    key="single_file_tab_asc_tab_example_file_choice",
                    help="If the 'Example File' option is selected below, the file that gets selected here will be used for processing.",
                )
            else:
                st.session_state["single_file_tab_asc_tab_example_use_example_or_uploaded_file_choice"] = (
                    "Uploaded File"
                )
                st.session_state["single_file_tab_asc_tab_example_file_choice"] = None

        if len(EXAMPLE_ASC_FILES) > 0 and os.path.isfile(EXAMPLE_ASC_FILES[0]):

            with st.columns(3)[1]:
                use_example_or_uploaded_file_choice = st.radio(
                    "Should the uploaded file be used or the selected example file?",
                    index=1,
                    options=["Uploaded File", "Example File"],
                    key="single_file_tab_asc_tab_example_use_example_or_uploaded_file_choice",
                    horizontal=True,
                    help="This selection determines if the uploaded .asc file on the top left or the selected example file on the top right will be used for processing.",
                )
        show_file_parsing_settings("_single_asc")

        upload_file_button = st.form_submit_button(label="Load selected data.")
    if upload_file_button:
        if "dffix_single_asc" in st.session_state:
            del st.session_state["dffix_single_asc"]
        if "trial_single_asc" in st.session_state:
            del st.session_state["trial_single_asc"]
        if st.session_state["single_file_tab_asc_tab_example_use_example_or_uploaded_file_choice"] == "Example File":
            st.session_state["single_asc_file_asc"] = st.session_state["single_file_tab_asc_tab_example_file_choice"]
            st.session_state["single_asc_file_ias_files"] = []
        else:
            st.session_state["single_asc_file_asc"] = st.session_state["single_asc_uploaded_file"]
            st.session_state["single_asc_file_ias_files"] = st.session_state["single_asc_file_ias_files_uploaded"]
        if "events_df" in st.session_state:
            del st.session_state["events_df"]
        if "trial_single_asc" in st.session_state:
            del st.session_state["trial_single_asc"]
        if in_st_nn("single_asc_file_asc"):
            if st.session_state["trial_start_keyword_single_asc"] == "custom":
                trial_start_keyword = st.session_state["trial_custom_start_keyword_single_asc"]
            else:
                trial_start_keyword = st.session_state["trial_start_keyword_single_asc"]
            if st.session_state["trial_end_keyword_single_asc"] == "custom":
                trial_end_keyword = st.session_state["trial_custom_end_keyword_single_asc"]
            else:
                trial_end_keyword = st.session_state["trial_end_keyword_single_asc"]
            trial_choices_single_asc, trials_by_ids, lines, asc_file, trials_dict = ut.get_trials_list(
                st.session_state["single_asc_file_asc"],
                close_gap_between_words=st.session_state["close_gap_between_words_single_asc"],
                paragraph_trials_only=st.session_state["paragraph_trials_only_single_asc"],
                ias_files=st.session_state["single_asc_file_ias_files"],
                trial_start_keyword=trial_start_keyword,
                end_trial_at_keyword=trial_end_keyword,
            )
            asc_file_stem = pl.Path(str(st.session_state["single_asc_file_asc"])).stem
            st.session_state["logger"].info(f"Found {len(trials_by_ids)} trials in {asc_file_stem}.")
            st.session_state["trials_dict_single_asc"] = trials_dict
            st.session_state["trials_by_ids"] = trials_by_ids
            st.session_state["trial_choices_single_asc"] = trial_choices_single_asc
            st.session_state["lines"] = lines
            st.session_state["asc_file"] = asc_file
        else:
            st.warning("Please select a file to run")

    if in_st_nn("single_asc_file_asc") and in_st_nn("trials_dict_single_asc"):
        single_file_tab_asc_tab.markdown("### Metadata found in .asc file")
        trials_dict_for_showing = copy.deepcopy(
            {
                k: {
                    k1: v1
                    for k1, v1 in v.items()
                    if k1
                    not in [
                        "chars_list",
                        "line_heights",
                        "x_char_unique",
                    ]
                }
                for k, v in st.session_state["trials_dict_single_asc"].items()
                if isinstance(v, dict)
            }
        )
        for k, v in st.session_state["trials_dict_single_asc"].items():
            if not isinstance(v, dict):
                trials_dict_for_showing[k] = v
        single_file_tab_asc_tab.json(trials_dict_for_showing, expanded=False)
    if "trial_choices_single_asc" in st.session_state:
        single_file_tab_asc_tab.markdown("### Trial and algorithm selection")
        with single_file_tab_asc_tab.form(key="single_file_tab_asc_tab_trial_select_form"):
            trial_choice = st.selectbox(
                "Which trial should be cleaned and corrected?",
                st.session_state["trial_choices_single_asc"],
                key="trial_id",
                index=0,
                help="This is a list of the trial ids found in the ASC, please choose which one should used for further processing.",
            )
            discard_fixations_without_sfix = st.checkbox(
                "Should fixations that start before trial start but end after be discarded?",
                value=get_def_val_w_underscore("discard_fixations_without_sfix_single_asc", True, [True, False]),
                key="discard_fixations_without_sfix_single_asc",
                help="In cases where the trigger flag for the start of the trial occurs during a fixation, this setting determines wether that fixation is to be discarded or kept.",
            )
            load_trial_btn = st.form_submit_button("Load trial")
        if load_trial_btn:
            cp2st("discard_fixations_without_sfix_single_asc")
            if "dffix_cleaned_single_asc" in st.session_state:
                del st.session_state["dffix_cleaned_single_asc"]
            if "dffix_single_asc" in st.session_state:
                del st.session_state["dffix_single_asc"]

            single_file_tab_asc_tab.write(f'You selected: {st.session_state["trial_id"]}')
            trial = st.session_state["trials_by_ids"][st.session_state["trial_id"]]
            trial_lines = st.session_state["lines"][trial["trial_start_idx"] + 1 : trial["trial_end_idx"]]
            trial["trial_lines"] = trial_lines
            events_df, trial = get_raw_events_df_and_trial(
                trial, st.session_state["discard_fixations_without_sfix_single_asc"]
            )
            st.session_state["events_df"] = events_df
            st.session_state["trial_single_asc"] = trial
        if "events_df" in st.session_state:

            if "trial_single_asc" in st.session_state:
                filtered_trial = filter_trial_for_export(copy.deepcopy(st.session_state["trial_single_asc"]))
                single_file_tab_asc_tab.markdown(
                    f'### Result dataframes for trial {st.session_state["trial_single_asc"]["trial_id"]}'
                )
                trial_expander_single = single_file_tab_asc_tab.expander("Show Trial Information", False)
                trial_expander_single.json(filtered_trial, expanded=False)
            events_df_expander_single = single_file_tab_asc_tab.expander("Show fixations and saccades before cleaning")
            events_df = st.session_state["events_df"].set_index("num").copy()
            events_df_expander_single.markdown("## Events before cleaning")
            events_df_expander_single.markdown("### Fixations")
            events_df_expander_single.dataframe(
                events_df[events_df["msg"] == "FIX"].dropna(how="all", axis=1).copy(),
                use_container_width=True,
                height=200,
            )
            events_df_expander_single.markdown("### Saccades")
            events_df_expander_single.dataframe(
                events_df[events_df["msg"] == "SAC"].dropna(how="all", axis=1).copy(),
                use_container_width=True,
                height=200,
            )
            if not events_df[events_df["msg"] == "BLINK"].empty:
                events_df_expander_single.markdown("### Blinks")
                blinksdf = events_df[events_df["msg"] == "BLINK"].dropna(how="all", axis=1).copy()
                blinksdf = blinksdf.drop(
                    columns=[c for c in blinksdf.columns if c in ["blink", "blink_after", "blink_before"]]
                )
                events_df_expander_single.dataframe(blinksdf, use_container_width=True, height=200)
            show_cleaning_options(single_file_tab_asc_tab, events_df[events_df["msg"] == "FIX"], "single_asc")

        if "dffix_cleaned_single_asc" in st.session_state and "trial_single_asc" in st.session_state:
            show_cleaning_results(
                single_file_tab_asc_tab,
                trial=st.session_state["trial_single_asc"],
                expander_text="Show Cleaned Fixations Dataframe",
                dffix_cleaned=st.session_state["dffix_cleaned_single_asc"],
                dffix_no_clean_name="dffix_no_clean",
                expander_open=True,
                key_str="single_asc",
            )

            with single_file_tab_asc_tab.form(key="correction_options_form_single_asc"):
                algo_choice_single_asc = st.multiselect(
                    "Choose line-assignment algorithm",
                    ALGO_CHOICES,
                    key="algo_choice_single_asc",
                    default=get_def_val_w_underscore("algo_choice_single_asc", DEFAULT_ALGO_CHOICE, ALGO_CHOICES),
                    help="This selection determines which of the available line assignment algorithms should be used to assign each fixation to their most appropriate line of text. The rest of the analysis is dependent on this line assignment. It is recommended to try out multiple different assignment approaches to make sure it performs well for on your data.",
                )

                with st.popover("Fixation features definitions"):
                    fix_colnames_markdown = get_fix_colnames_markdown()
                    st.markdown(fix_colnames_markdown)
                fix_cols_to_add_single_asc = st.multiselect(
                    "Select what fixation measures to calculate.",
                    options=ALL_FIX_MEASURES,
                    key="fix_cols_to_add_single_asc",
                    default=get_def_val_w_underscore(
                        "fix_cols_to_add_single_asc", DEFAULT_FIX_MEASURES, ALL_FIX_MEASURES
                    ),
                    help="This selection determines what fixation-level measures will be calculated. If you are in doubt about which ones you might need for your analysis, you can select all of them since it only slightly adds to the processing time.",
                )
                cp2st("fix_cols_to_add_single_asc")

                process_trial_btn = st.form_submit_button("Correct fixations for trial")
            if process_trial_btn:
                process_single_dffix_and_add_to_state("_single_asc")
                high_fix_count_dfs = check_for_large_number_of_fixations_on_word(
                    st.session_state["dffix_single_asc"],
                    single_file_tab_asc_tab,
                    st.session_state["algo_choice_single_asc"],
                )

        if "dffix_single_asc" in st.session_state and st.session_state["dffix_single_asc"].empty:
            st.warning("Fixations dataframe empty")
            del st.session_state["dffix_single_asc"]
        if "dffix_single_asc" in st.session_state and "trial_single_asc" in st.session_state:
            trial = st.session_state["trial_single_asc"]
            filtered_trial = filter_trial_for_export(copy.deepcopy(trial))
            trial_expander_single = single_file_tab_asc_tab.expander("Show Trial Information", False)
            trial_expander_single.markdown(f'### Metadata for trial {trial["trial_id"]}')
            trial_expander_single.json(filtered_trial, expanded=False)
            if "saccade_df" not in st.session_state:
                if st.session_state["dffix_single_asc"].shape[0] > 1:
                    saccade_df = get_saccade_df(
                        st.session_state["dffix_single_asc"],
                        trial,
                        st.session_state["algo_choice_single_asc"],
                        st.session_state["events_df"],
                    )
                    saccade_df = reorder_columns(saccade_df)
                    st.session_state["saccade_df"] = saccade_df
                    trial["saccade_df"] = saccade_df.to_dict()
                    fig = plot_saccade_df(st.session_state["dffix_single_asc"], saccade_df, trial, True, False)
                    fig.savefig(RESULTS_FOLDER / f"{trial['subject']}_{trial['trial_id']}_saccades.png")
                else:
                    st.warning(
                        f"🚨 Only {st.session_state['dffix'].shape[0]} fixation left after processing. saccade_df not created for trial {st.session_state['trial']['trial_id']} 🚨"
                    )
            dffix_expander_single = single_file_tab_asc_tab.expander("Show Fixations Dataframe", False)
            with dffix_expander_single.popover("Column name definitions"):
                fix_colnames_markdown = get_fix_colnames_markdown()
                st.markdown(fix_colnames_markdown)
            if "saccade_df" in st.session_state:
                saccade_df_expander_single = single_file_tab_asc_tab.expander("Show Saccade Dataframe", False)
                with saccade_df_expander_single.popover("Column name definitions"):
                    sac_colnames_markdown = get_sac_colnames_markdown()
                    st.markdown(sac_colnames_markdown)
                saccade_df_expander_single.dataframe(st.session_state["saccade_df"], height=200)
            if "chars_list" in trial or "words_list" in trial:
                df_stim_expander_single = single_file_tab_asc_tab.expander("Show Stimulus Dataframes", False)
                df_stim_expander_single.markdown("### Characters dataframe")
                with df_stim_expander_single.popover(
                    "Column names definitions", help="Show column names and their definitions."
                ):
                    chars_colnames_markdown = read_chars_col_names()
                    st.markdown(chars_colnames_markdown)
                df_stim_expander_single.dataframe(
                    pd.DataFrame(trial["chars_list"]), use_container_width=True, height=200
                )
                if "words_list" in trial:
                    df_stim_expander_single.markdown("### Words dataframe")
                    df_stim_expander_single.dataframe(
                        pd.DataFrame(trial["words_list"]), use_container_width=True, height=200
                    )
            else:
                st.warning("🚨 No stimulus information in session state")
            single_file_tab_asc_tab.markdown(f'### Fixation related plots for trial {trial["trial_id"]}')
            plot_expander_single = single_file_tab_asc_tab.expander("Show Plots", True, icon="📈")

            fix_cols_to_keep = [
                c
                for c in st.session_state["dffix_single_asc"].columns
                if (
                    (
                        any([lname in c for lname in ALL_FIX_MEASURES])
                        and any([lname in c for lname in st.session_state["fix_cols_to_add_single_asc"]])
                    )
                    or (not any([lname in c for lname in ALL_FIX_MEASURES]))
                )
            ]

            dffix_for_display_and_save = st.session_state["dffix_single_asc"].loc[:, fix_cols_to_keep].copy()
            dffix_expander_single.dataframe(dffix_for_display_and_save, height=200)
            csv = convert_df(dffix_for_display_and_save)
            dffix_expander_single.download_button(
                "⏬ Download fixation dataframe",
                csv,
                f'{filtered_trial["subject"]}_{filtered_trial["trial_id"]}.csv',
                "text/csv",
                key="download-csv_single_asc",
                help="This downloads the corrected fixations dataframe as a .csv file with the filename containing the subject name and trial id.",
            )
            trial_expander_single.download_button(
                "⏬ Download trial info as JSON",
                json.dumps(filtered_trial),
                f'{filtered_trial["subject"]}_{filtered_trial["trial_id"]}.json',
                "json",
                key="download-trial_single_asc",
                help="This downloads the extracted trial information as a .json file with the filename containing the subject name and trial id.",
            )
            plot_expander_single_options_c1, plot_expander_single_options_c2 = plot_expander_single.columns([0.6, 0.3])
            plotting_checkboxes_single = plot_expander_single_options_c1.multiselect(
                "Select what gets plotted",
                STIM_FIX_PLOT_OPTIONS,
                default=["Uncorrected Fixations", "Corrected Fixations", "Characters", "Word boxes"],
                key="plotting_checkboxes_single_asc",
                help="This selection determines what information is plotted. The Corrected Fixations are the fixations after being snapped to their assigned line of text. The Word and Character boxes are the bounding boxes for the stimulus.",
            )
            scale_factor_single_asc = plot_expander_single_options_c2.number_input(
                label="Scale factor for stimulus image",
                min_value=0.01,
                max_value=3.0,
                value=get_default_val("scale_factor_single_asc", 0.5),
                step=0.1,
                key="scale_factor_single_asc",
                help="This can be used to simply make the plot larger or smaller.",
            )
            lines_in_plot_single_asc = plot_expander_single_options_c1.radio(
                "Lines between fixations for:",
                ["Uncorrected", "Corrected", "Both", "Neither"],
                index=0,
                key="lines_in_plot_single_asc",
                help="This selection determines which of the fixations in the plot will be connected by lines rather than a simple scatter plot of fixation points.",
            )

            dffix = st.session_state["dffix_single_asc"]
            saccade_df = st.session_state["saccade_df"]
            plot_expander_single.markdown("#### Fixations before and after line assignment")

            show_fix_sacc_plots_single_asc = plot_expander_single.checkbox(
                "Show plots", True, "show_fix_sacc_plots_single_asc"
            )
            if show_fix_sacc_plots_single_asc:
                selected_plotting_font_single_asc = plot_expander_single_options_c2.selectbox(
                    "Font to use for plotting",
                    AVAILABLE_FONTS,
                    index=FONT_INDEX,
                    key="selected_plotting_font_single_asc",
                    help="This selects which font is used to display the words or characters making up the stimulus. This selection only affects the plot and has no effect on the analysis as everything else is based on the bounding boxes of the words and characters.",
                )
                plot_expander_single.plotly_chart(
                    plotly_plot_with_image(
                        dffix,
                        trial,
                        to_plot_list=plotting_checkboxes_single,
                        algo_choice=st.session_state["algo_choice_single_asc"],
                        scale_factor=scale_factor_single_asc,
                        font=selected_plotting_font_single_asc,
                        lines_in_plot=lines_in_plot_single_asc,
                    ),
                    use_container_width=False,
                )
                plot_expander_single.markdown("#### Saccades")

                plotting_checkboxes_sacc_single_asc = plot_expander_single.multiselect(
                    "Select what gets plotted",
                    [
                        "Saccades",
                        "Saccades snapped to line",
                        "Uncorrected Fixations",
                        "Corrected Fixations",
                        "Word boxes",
                        "Characters",
                        "Character boxes",
                    ],
                    default=["Saccades", "Characters", "Word boxes"],
                    key="plotting_checkboxes_sacc_single_asc",
                    help="This selection determines what information is plotted. The Corrected Fixations are the fixations after being snapped to their assigned line of text. The saccades snapped to line follow the same logic. The Word and Character boxes are the bounding boxes for the stimulus.",
                )
                plot_expander_single.plotly_chart(
                    plotly_plot_with_image(
                        dffix,
                        trial,
                        saccade_df=saccade_df,
                        to_plot_list=plotting_checkboxes_sacc_single_asc,
                        algo_choice=st.session_state["algo_choice_single_asc"],
                        scale_factor=scale_factor_single_asc,
                        font=selected_plotting_font_single_asc,
                        lines_in_plot=lines_in_plot_single_asc,
                    ),
                    use_container_width=False,
                )
                plot_expander_single.markdown("#### Y-coordinate correction due to line-assignment")
                plot_expander_single.plotly_chart(
                    plot_y_corr(dffix, st.session_state["algo_choice_single_asc"]), use_container_width=True
                )
            if "average_y_corrections" in trial:
                plot_expander_single.markdown(
                    "Average y-correction:",
                    help="Average difference between raw y position of a fixation and the center of the line to which it was assigned in pixels",
                )
                plot_expander_single.dataframe(pd.DataFrame(trial["average_y_corrections"]), hide_index=True)

            if show_fix_sacc_plots_single_asc:
                select_and_show_fix_sacc_feature_plots(
                    dffix,
                    saccade_df,
                    plot_expander_single,
                    plot_choice_fix_feature_name="plot_choice_fix_features",
                    plot_choice_sacc_feature_name="plot_choice_sacc_features",
                    feature_plot_selection="feature_plot_selection_single_asc",
                    plot_choice_fix_sac_feature_x_axis_name="feature_plot_x_selection_single_asc",
                )
            if "chars_list" in st.session_state["trial_single_asc"]:
                single_file_tab_asc_tab.markdown(
                    f'### Analysis for trial {st.session_state["trial_single_asc"]["trial_id"]}'
                )
                analysis_expander_single_asc = single_file_tab_asc_tab.expander("Show Analysis results", True)
                with analysis_expander_single_asc.form("run_show_analysis_single_asc_form"):
                    algo_choice_single_asc_eyekit = st.selectbox(
                        "Select which corrected fixations should be used for the analysis.",
                        st.session_state["algo_choice_single_asc"],
                        index=get_default_index(
                            "_algo_choice_single_asc_eyekit", st.session_state["algo_choice_single_asc"], 0
                        ),
                        key="algo_choice_single_asc_eyekit",
                        help="If more than one line assignment algorithm was selected above, this selection determines which of the resulting line assignments should be used for the analysis.",
                    )
                    measures_to_calculate_single_asc = st.multiselect(
                        "Select what word measures to calculate.",
                        options=ALL_MEASURES_OWN,
                        key="measures_to_calculate_single_asc",
                        default=get_def_val_w_underscore(
                            "measures_to_calculate_single_asc", DEFAULT_WORD_MEASURES, ALL_MEASURES_OWN
                        ),
                        help="This selection determines which of the supported word-level measures should be calculated.",
                    )
                    sent_measures_to_calculate_single_asc = st.multiselect(
                        "Select what sentence measures to calculate.",
                        options=ALL_SENT_MEASURES,
                        key="sent_measures_to_calculate_single_asc",
                        default=get_def_val_w_underscore(
                            "sent_measures_to_calculate_single_asc", DEFAULT_SENT_MEASURES, ALL_SENT_MEASURES
                        ),
                        help="This selection determines which of the supported sentence-level measures should be calculated.",
                    )

                    include_word_coords_in_output_single_asc = st.checkbox(
                        "Should word bounding box coordinates be included in the measures table?",
                        value=get_def_val_w_underscore(
                            "include_word_coords_in_output_single_asc", False, [True, False]
                        ),
                        key="include_word_coords_in_output_single_asc",
                        help="Determines if the bounding box coordinates should be included in the word measures dataframe.",
                    )
                    run_show_analysis_single_asc_button = st.form_submit_button("Run and show analysis")
                if run_show_analysis_single_asc_button and len(algo_choice_single_asc_eyekit) > 0:
                    cp2st("sent_measures_to_calculate_single_asc")
                    cp2st("measures_to_calculate_single_asc")
                    cp2st("algo_choice_single_asc_eyekit")
                    cp2st("include_word_coords_in_output_single_asc")
                    if len(measures_to_calculate_single_asc) > 0:
                        own_word_measures = get_all_measures(
                            st.session_state["trial_single_asc"],
                            st.session_state["dffix_single_asc"],
                            prefix="word",
                            use_corrected_fixations=True,
                            correction_algo=st.session_state["algo_choice_single_asc_eyekit"],
                            measures_to_calculate=st.session_state["measures_to_calculate_single_asc"],
                            include_coords=st.session_state["include_word_coords_in_output_single_asc"],
                            save_to_csv=True,
                        )
                        st.session_state["own_word_measures_single_asc"] = own_word_measures
                        sent_measures = compute_sentence_measures(
                            st.session_state["dffix_single_asc"],
                            pd.DataFrame(st.session_state["trial_single_asc"]["chars_df"]),
                            st.session_state["algo_choice_single_asc_eyekit"],
                            st.session_state["sent_measures_to_calculate_single_asc"],
                            save_to_csv=True,
                        )
                        st.session_state["own_sent_measures_single_asc"] = sent_measures
                    else:
                        st.warning("Please select one or more word measures to continue.")
                        if "own_word_measures_single_asc" in st.session_state:
                            del st.session_state["own_word_measures_single_asc"]
                if "own_word_measures_single_asc" in st.session_state:
                    own_word_measures = st.session_state["own_word_measures_single_asc"]

                    own_analysis_tab, eyekit_tab = analysis_expander_single_asc.tabs(
                        ["Analysis without eyekit", "Analysis using eyekit"]
                    )
                    with own_analysis_tab:
                        st.markdown(
                            "This analysis method does not require manual alignment and works when the stimulus coordinates are correctly identified."
                        )
                        st.markdown("### Word measures")
                        with st.popover("Column names definitions", help="Show column names and their definitions."):
                            with open("word_measures.md", "r") as f:
                                word_measure_colnames_markdown = "\n".join(f.readlines())
                            st.markdown(word_measure_colnames_markdown)
                        st.dataframe(own_word_measures, use_container_width=True, hide_index=True, height=200)
                        own_word_measures_csv = convert_df(own_word_measures)
                        subject = st.session_state["trial_single_asc"]["subject"]
                        trial_id = st.session_state["trial_single_asc"]["trial_id"]
                        st.download_button(
                            "⏬ Download word measures data",
                            own_word_measures_csv,
                            f"{subject}_{trial_id}_own_word_measures_df.csv",
                            "text/csv",
                            key="own_word_measures_df_download_btn_single_asc",
                            help="Download word level measures as a .csv file with the filename containing the trial id.",
                        )
                        show_plot = st.checkbox(
                            "Show Plot",
                            True,
                            "show_plot_analysis_single_asc",
                            help="If unticked, the plots in this section will be hidden. This can speed up using the interface if the plots are not required.",
                        )
                        if show_plot:
                            measure_words_own = st.selectbox(
                                "Select measure to visualize",
                                list(own_word_measures.columns),
                                key="measure_words_own_single_asc",
                                help="Selection determines which of the calculated word-level measures gets plotted. Where the measure is dependent on the line assignment, the name of the algorithm used to carry out those line assignments is included in the name of the measure.",
                                index=own_word_measures.shape[1] - 1,
                            )
                            fix_to_plot = ["Corrected Fixations"]
                            own_word_measures_fig, desired_width_in_pixels, desired_height_in_pixels = (
                                matplotlib_plot_df(
                                    st.session_state["dffix_single_asc"],
                                    st.session_state["trial_single_asc"],
                                    [st.session_state["algo_choice_single_asc_eyekit"]],
                                    None,
                                    box_annotations=own_word_measures[measure_words_own],
                                    fix_to_plot=fix_to_plot,
                                    stim_info_to_plot=["Characters", "Word boxes"],
                                )
                            )
                            st.pyplot(own_word_measures_fig)
                        st.markdown("### Sentence measures")
                        with st.popover("Column names definitions", help="Show column names and their definitions."):
                            with open("sentence_measures.md", "r") as f:
                                sentence_measure_colnames_markdown = "\n".join(f.readlines())
                            st.markdown(sentence_measure_colnames_markdown)
                        st.dataframe(
                            st.session_state["own_sent_measures_single_asc"],
                            use_container_width=True,
                            hide_index=True,
                            height=200,
                        )

                        own_sent_measures_csv = convert_df(st.session_state["own_sent_measures_single_asc"])
                        st.download_button(
                            "⏬ Download sentence measures data",
                            own_sent_measures_csv,
                            f"{subject}_{trial_id}_own_sentence_measures_df.csv",
                            "text/csv",
                            key="own_sent_measures_df_download_btn_single_asc",
                            help="Download sentence level measures as a .csv file with the filename containing the trial id.",
                        )
                    with eyekit_tab:
                        eyekit_input("_single_asc")

                        fixations_tuples, textblock_input_dict, screen_size = get_fix_seq_and_text_block(
                            st.session_state["dffix_single_asc"],
                            st.session_state["trial_single_asc"],
                            x_txt_start=st.session_state["x_txt_start_for_eyekit_single_asc"],
                            y_txt_start=st.session_state["y_txt_start_for_eyekit_single_asc"],
                            font_face=st.session_state["font_face_for_eyekit_single_asc"],
                            font_size=st.session_state["font_size_for_eyekit_single_asc"],
                            line_height=st.session_state["line_height_for_eyekit_single_asc"],
                            use_corrected_fixations=True,
                            correction_algo=st.session_state["algo_choice_single_asc_eyekit"],
                        )

                        eyekitplot_img = ekm.eyekit_plot(fixations_tuples, textblock_input_dict, screen_size)
                        st.image(eyekitplot_img, "Fixations and stimulus as used for anaylsis")

                        eyekit_run_analysis_button_single_asc = st.button(
                            "Run Eyekit powered analysis",
                            key="eyekit_run_analysis_button_single_asc",
                            help="Click to run analysis using Eyekit with the input as displayed above",
                        )
                        if eyekit_run_analysis_button_single_asc:
                            st.session_state["show_eyekit_analysis_single_asc"] = True
                        if (
                            "show_eyekit_analysis_single_asc" in st.session_state
                            and st.session_state["show_eyekit_analysis_single_asc"]
                            and textblock_input_dict is not None
                        ):

                            subject = st.session_state["trial_single_asc"]["subject"]
                            trial_id = st.session_state["trial_single_asc"]["trial_id"]
                            with open(
                                f"results/fixation_sequence_eyekit_{subject}_{trial_id}.json",
                                "r",
                            ) as f:
                                fixation_sequence_json = json.load(f)
                            fixation_sequence_json_str = json.dumps(fixation_sequence_json)

                            st.download_button(
                                "⏬ Download fixations in eyekits format",
                                fixation_sequence_json_str,
                                f"fixation_sequence_eyekit_{subject}_{trial_id}.json",
                                "json",
                                key="download_eyekit_fix_json_single_asc",
                                help="This downloads the extracted fixation information as a .json file in the eyekit format with the filename containing the subject name and trial id.",
                            )

                            with open(f"results/textblock_eyekit_{subject}_{trial_id}.json", "r") as f:
                                textblock_json = json.load(f)
                            textblock_json_str = json.dumps(textblock_json)

                            st.download_button(
                                "⏬ Download stimulus in eyekits format",
                                textblock_json_str,
                                f"textblock_eyekit_{subject}_{trial_id}.json",
                                "json",
                                key="download_eyekit_text_json_single_asc",
                                help="This downloads the extracted stimulus information as a .json file in the eyekit format with the filename containing the subject name and trial id.",
                            )

                            word_measures_df, character_measures_df = get_eyekit_measures(
                                fixations_tuples,
                                textblock_input_dict,
                                trial=st.session_state["trial_single_asc"],
                                get_char_measures=False,
                            )

                            st.dataframe(word_measures_df, use_container_width=True, hide_index=True, height=200)
                            word_measures_df_csv = convert_df(word_measures_df)

                            st.download_button(
                                "⏬ Download word measures data",
                                word_measures_df_csv,
                                f"{subject}_{trial_id}_word_measures_df.csv",
                                "text/csv",
                                key="word_measures_df_download_btn_single_asc",
                            )
                            measure_words = st.selectbox(
                                "Select measure to visualize",
                                list(ekm.MEASURES_DICT.keys()),
                                key="measure_words_single_asc",
                                index=0,
                            )
                            st.image(
                                ekm.plot_with_measure(
                                    fixations_tuples, textblock_input_dict, screen_size, measure_words
                                )
                            )

                            if character_measures_df is not None:
                                st.dataframe(
                                    character_measures_df, use_container_width=True, hide_index=True, height=200
                                )
            else:
                single_file_tab_asc_tab.warning("🚨 Stimulus information needed for analysis 🚨")

    single_file_tab_csv_tab.markdown(
        "#### Upload one .csv file for the fixations and one .json or .csv file for the stimulus information and select a trial. Then select a line-assignment algorithm and plot/download the results"
    )

    def change_which_file_is_used_and_clear_results_for_custom():
        if st.session_state["single_file_tab_csv_tab_example_use_example_or_uploaded_file_choice"] == "Example Files":
            st.session_state["single_csv_file"] = EXAMPLE_CUSTOM_CSV_FILE
            st.session_state["single_csv_file_stim"] = EXAMPLE_CUSTOM_JSON_FILE
        else:
            st.session_state["single_csv_file"] = st.session_state["single_csv_file_uploaded"]
            st.session_state["single_csv_file_stim"] = st.session_state["single_csv_file_stim_uploaded"]

    with single_file_tab_csv_tab.form("single_file_tab_csv_tab_load_example_form"):
        csv_upl_col1, csv_upl_col2 = st.columns(2)
        single_csv_file = csv_upl_col1.file_uploader(
            "Select .csv file containing the fixation data",
            accept_multiple_files=False,
            key="single_csv_file_uploaded",
            type={"csv", "txt", "dat"},
            help="Drag and drop or select a single .csv, .txt or .dat file that you wish to process. This can be left blank if you chose to use the examples.",
        )
        single_csv_stim_file = csv_upl_col2.file_uploader(
            "Select .csv or .json file containing the stimulus data",
            accept_multiple_files=False,
            key="single_csv_file_stim_uploaded",
            type={"json", "csv", "txt", "dat"},
            help="Drag and drop or select a single .json, .csv, .txt or .dat file that you wish to process as the stimulus file for the uploaded fixation data. This can be left blank if you chose to use the examples.",
        )

        use_example_or_uploaded_file_choice = st.radio(
            "Should the uploaded files be used or some example files?",
            index=1,
            options=["Uploaded Files", "Example Files"],
            key="single_file_tab_csv_tab_example_use_example_or_uploaded_file_choice",
            help="This selection determines if the uploaded file on the top left or the included example files will be used for processing.",
        )
        upload_custom_file_button = st.form_submit_button(
            label="Load selected data.", on_click=change_which_file_is_used_and_clear_results_for_custom
        )

    if upload_custom_file_button:
        for k in [
            "trial_keys_single_csv",
            "trial_single_csv",
            "dffix_single_csv",
            "dffix_cleaned_single_csv",
            "stimdf_single_csv",
            "dffix_cleaned_corrected_single_csv",
        ]:
            if k in st.session_state:
                del st.session_state[k]

        if use_example_or_uploaded_file_choice != "Example Files":
            st.session_state["dffix_single_csv"] = load_csv_delim_agnostic(single_csv_file)
            st.session_state["dffix_col_mappings_guess_single_csv"] = find_col_name_suggestions(
                list(st.session_state["dffix_single_csv"].columns), COLNAME_CANDIDATES_CUSTOM_CSV_FIX
            )
        else:
            st.session_state["dffix_single_csv"] = pd.read_csv(EXAMPLE_CUSTOM_CSV_FILE)
            st.session_state["dffix_col_mappings_guess_single_csv"] = COLNAME_CANDIDATES_CUSTOM_CSV_FIX_DEFAULT
        st.session_state.update(st.session_state["dffix_col_mappings_guess_single_csv"])

        if use_example_or_uploaded_file_choice != "Example Files":
            if ".json" in single_csv_stim_file.name:
                decoded_input = get_decoded_input_from_file(single_csv_stim_file)
                trial = json.loads(decoded_input)
                st.session_state["stimdf_single_csv"] = trial
                colnames_stim = list(st.session_state["stimdf_single_csv"].keys())
            else:
                st.session_state["stimdf_single_csv"] = load_csv_delim_agnostic(single_csv_stim_file)
                colnames_stim = st.session_state["stimdf_single_csv"].columns
            st.session_state["chars_df_col_mappings_guess_single_csv"] = find_col_name_suggestions(
                list(colnames_stim), COLNAMES_CUSTOM_CSV_STIM
            )
        else:
            with open(EXAMPLE_CUSTOM_JSON_FILE, "r") as json_file:
                json_string = json_file.read()
            st.session_state["stimdf_single_csv"] = json.loads(json_string)
            colnames_stim = list(st.session_state["stimdf_single_csv"].keys())
            st.session_state["chars_df_col_mappings_guess_single_csv"] = COLNAMES_CUSTOM_CSV_STIM_DEFAULT
        st.session_state.update(st.session_state["chars_df_col_mappings_guess_single_csv"])

        if "algo_choice_analysis_single_csv" in st.session_state:
            del st.session_state["algo_choice_analysis_single_csv"]
    if in_st_nn("dffix_single_csv"):
        with single_file_tab_csv_tab.expander("Preview loaded files"):
            if in_st_nn("dffix_single_csv"):
                st.dataframe(
                    st.session_state["dffix_single_csv"],
                    use_container_width=True,
                    hide_index=True,
                    on_select="ignore",
                    height=200,
                )
            if in_st_nn("stimdf_single_csv"):
                if ".json" in st.session_state["single_csv_file_stim"].name:
                    st.json(st.session_state["stimdf_single_csv"], expanded=False)
                else:
                    st.dataframe(
                        st.session_state["stimdf_single_csv"],
                        use_container_width=True,
                        hide_index=True,
                        on_select="ignore",
                        height=200,
                    )
    if in_st_nn("single_csv_file") and in_st_nn("single_csv_file_stim"):
        with single_file_tab_csv_tab.expander("Column names for csv files", expanded=True):
            with st.form("Column names for csv files"):
                st.markdown("### Please set column/key names for csv/json files")
                st.markdown("#### Fixation file column names:")
                c1, c2, c3 = st.columns(3)
                x_col_name_fix = c1.text_input(
                    "x coordinate",
                    key="x_col_name_fix",
                    value=get_default_val(
                        "x_col_name_fix", st.session_state["dffix_col_mappings_guess_single_csv"]["x_col_name_fix"]
                    ),
                    help="This should be a column that contains the horizontal position (usually in pixels) of where fixations were detected.",
                )
                y_col_name_fix = c2.text_input(
                    "y coordinate",
                    key="y_col_name_fix",
                    value=get_default_val(
                        "y_col_name_fix", st.session_state["dffix_col_mappings_guess_single_csv"]["y_col_name_fix"]
                    ),
                    help="This should be a column that contains the vertical position (usually in pixels) of where fixations were detected.",
                )
                subject_col_name_fix = c1.text_input(
                    "subject id",
                    key="subject_col_name_fix",
                    value=get_default_val(
                        "subject_col_name_fix",
                        st.session_state["dffix_col_mappings_guess_single_csv"]["subject_col_name_fix"],
                    ),
                    help="This should be a column that contains the unique identifier for each subject.",
                )
                trial_id_col_name_fix = c3.text_input(
                    "trial id",
                    key="trial_id_col_name_fix",
                    value=get_default_val(
                        "trial_id_col_name_fix",
                        st.session_state["dffix_col_mappings_guess_single_csv"]["trial_id_col_name_fix"],
                    ),
                    help="A column that contains identifiers or numbers corresponding to specific trials of an experiment.",
                )
                time_start_col_name_fix = c2.text_input(
                    "fixation start time",
                    key="time_start_col_name_fix",
                    value=get_default_val(
                        "time_start_col_name_fix",
                        st.session_state["dffix_col_mappings_guess_single_csv"]["time_start_col_name_fix"],
                    ),
                    help="This should be a column that contains the timestamp when fixations start.",
                )
                time_stop_col_name_fix = c3.text_input(
                    "fixation end time",
                    key="time_stop_col_name_fix",
                    value=get_default_val(
                        "time_stop_col_name_fix",
                        st.session_state["dffix_col_mappings_guess_single_csv"]["time_stop_col_name_fix"],
                    ),
                    help="This should be a column that contains the timestamp when fixations ended.",
                )
                st.markdown("#### Stimulus file column/key names:")
                c1, c2, c3 = st.columns(3)
                x_col_name_fix_stim = c1.text_input(
                    "x coordinate",
                    key="x_col_name_fix_stim",
                    value=get_default_val("x_col_name_fix_stim", "char_x_center"),
                    help="This should be a column that contains the horizontal position (usually in pixels) of the center of the characters.",
                )
                y_col_name_fix_stim = c2.text_input(
                    "y coordinate",
                    key="y_col_name_fix_stim",
                    value=get_default_val("y_col_name_fix_stim", "char_y_center"),
                    help="This should be a column that contains the vertical position (usually in pixels) of the center of the characters",
                )
                x_start_col_name_fix_stim = c3.text_input(
                    "x min of interest areas",
                    key="x_start_col_name_fix_stim",
                    value=get_default_val("x_start_col_name_fix_stim", "char_xmin"),
                    help="This should be a column that contains the minimum horizontal position (in pixels) for each interest area.",
                )
                x_end_col_name_fix_stim = c1.text_input(
                    "x max of interest areas",
                    key="x_end_col_name_fix_stim",
                    value=get_default_val("x_end_col_name_fix_stim", "char_xmax"),
                    help="This should be a column that contains the maximum horizontal position (in pixels) for each interest area.",
                )
                y_start_col_name_fix_stim = c2.text_input(
                    "y min of interest areas",
                    key="y_start_col_name_fix_stim",
                    value=get_default_val("y_start_col_name_fix_stim", "char_ymin"),
                    help="This should be a column that contains the minimum vertical position (in pixels) for each interest area.",
                )
                y_end_col_name_fix_stim = c3.text_input(
                    "x max of interest areas",
                    key="y_end_col_name_fix_stim",
                    value=get_default_val("y_end_col_name_fix_stim", "char_ymax"),
                    help="This should be a column that contains the maximum vertical position (in pixels) for each interest area.",
                )
                char_col_name_fix_stim = c1.text_input(
                    "content of interest area",
                    key="char_col_name_fix_stim",
                    value=get_default_val("char_col_name_fix_stim", "char"),
                    help="This should be a column that contains the content associated with each interest area.",
                )
                line_num_col_name_stim = c3.text_input(
                    "line number for interest areas",
                    key="line_num_col_name_stim",
                    value=get_default_val("line_num_col_name_stim", "assigned_line"),
                    help="This should be a column that contains the unique identifier assigned to each line.",
                )
                # TODO Change to item rather than trial id?
                trial_id_col_name_stim = c2.text_input(
                    "trial id",
                    key="trial_id_col_name_stim",
                    value=get_default_val("trial_id_col_name_stim", "trial_id"),
                    help="This should be a column that contains the unique identifier for each stimulus.",
                )
                form_submitted = st.form_submit_button("Confirm column/key names")

    if (
        in_st_nn("single_csv_file")
        and in_st_nn("single_csv_file_stim")
        and in_st_nn("dffix_single_csv")
        and form_submitted
    ):
        if "trial_keys_single_csv" in st.session_state:
            del st.session_state["trial_keys_single_csv"]
        if "trial_single_csv" in st.session_state:
            del st.session_state["trial_single_csv"]
        if "trial_id_selected_single_csv" in st.session_state:
            del st.session_state["trial_id_selected_single_csv"]
        if "algo_choice_analysis_single_csv" in st.session_state:
            del st.session_state["algo_choice_analysis_single_csv"]
        if "dffix_cleaned_single_csv" in st.session_state:
            del st.session_state["dffix_cleaned_single_csv"]
        if "dffix_cleaned_corrected_single_csv" in st.session_state:
            del st.session_state["dffix_cleaned_corrected_single_csv"]

        try:
            trials_by_ids, trial_keys = get_fixations_file_trials_list(
                st.session_state["dffix_single_csv"], st.session_state["stimdf_single_csv"]
            )

            st.session_state["trials_by_ids_single_csv"] = trials_by_ids
            st.session_state["trial_keys_single_csv"] = trial_keys
        except Exception as e:
            st.session_state["logger"].warning(e)
            st.session_state["logger"].warning("get_fixations_file_trials_list failed")
            st.warning("Getting dataframes failed. Please make sure the column names are correct.")
    if "trial_keys_single_csv" in st.session_state:
        with single_file_tab_csv_tab.form(key="trial_selection_form_single_csv"):
            trial_choice = st.selectbox(
                "Which trial should be corrected?",
                st.session_state["trial_keys_single_csv"],
                key="trial_id_selected_single_csv",
                index=0,
                help="Choose one of the available trials from the list displayed.",
            )
            select_trial_btn = st.form_submit_button("Select trial")
    if "trial_keys_single_csv" in st.session_state and select_trial_btn:
        if "dffix_cleaned_single_csv" in st.session_state:
            del st.session_state["dffix_cleaned_single_csv"]
        if "dffix_cleaned_corrected_single_csv" in st.session_state:
            del st.session_state["dffix_cleaned_corrected_single_csv"]
        st.session_state["trial_single_csv"] = st.session_state["trials_by_ids_single_csv"][trial_choice]
        st.session_state["trial_single_csv"]["dffix_no_clean"] = st.session_state["trial_single_csv"]["dffix"].copy()
    if "trial_id_selected_single_csv" in st.session_state and "trial_single_csv" in st.session_state:
        trial = st.session_state["trial_single_csv"]
        show_cleaning_options(single_file_tab_csv_tab, trial["dffix"], "single_csv")
    if "dffix_cleaned_single_csv" in st.session_state:
        show_cleaning_results(
            single_file_tab_csv_tab,
            st.session_state["trials_by_ids_single_csv"][trial_choice],
            "Show Clean results",
            st.session_state["dffix_cleaned_single_csv"],
            "dffix_no_clean",
            True,
            key_str="single_csv",
        )
    if "dffix_cleaned_single_csv" in st.session_state:
        with single_file_tab_csv_tab.form(key="algo_selection_form_single_csv"):
            algo_choice_single_csv = st.multiselect(
                "Choose line-assignment algorithms",
                ALGO_CHOICES,
                key="algo_choice_single_csv",
                default=get_def_val_w_underscore("algo_choice_single_csv", DEFAULT_ALGO_CHOICE, ALGO_CHOICES),
                help="This selection determines which of the available line assignment algorithms should be used to assign each fixation to their most appropriate line of text. The rest of the analysis is dependent on this line assignment. It is recommended to try out multiple different assignment approaches to make sure it performs well for on your data.",
            )
            process_trial_btn = st.form_submit_button("Correct fixations")
    if "dffix_cleaned_single_csv" in st.session_state and process_trial_btn:
        cp2st("algo_choice_single_csv")
        if "algo_choice_analysis_single_csv" in st.session_state:
            del st.session_state["algo_choice_analysis_single_csv"]

        trial["dffix"] = st.session_state["dffix_cleaned_single_csv"]
        dffix, trial, dpi, screen_res, font, font_size = process_trial_choice_single_csv(
            trial, algo_choice_single_csv, st.session_state["models_dict"]
        )
        st.session_state["trial_single_csv"] = trial
        st.session_state["dffix_cleaned_corrected_single_csv"] = dffix
    if "dffix_cleaned_corrected_single_csv" in st.session_state:
        trial = st.session_state["trial_single_csv"]
        dffix = st.session_state["dffix_cleaned_corrected_single_csv"]
        csv = convert_df(dffix)

        single_file_tab_csv_tab.download_button(
            "⏬ Download corrected fixation data",
            csv,
            f'{trial["trial_id"]}.csv',
            "text/csv",
            key="download-csv-single_csv",
            help="This downloads the corrected fixations dataframe as a .csv file with the filename containing the trial id.",
        )
        with single_file_tab_csv_tab.expander("Show corrected fixation data", expanded=True):
            st.dataframe(dffix, use_container_width=True, hide_index=True, height=200)
        with single_file_tab_csv_tab.expander("Show fixation plots", expanded=True):

            plotting_checkboxes_single_single_csv = st.multiselect(
                "Select what gets plotted",
                STIM_FIX_PLOT_OPTIONS,
                default=["Uncorrected Fixations", "Corrected Fixations", "Characters", "Word boxes"],
                key="plotting_checkboxes_single_single_csv",
                help="This selection determines what information is plotted. The Corrected Fixations are the fixations after being snapped to their assigned line of text. The Word and Character boxes are the bounding boxes for the stimulus.",
            )

            st.plotly_chart(
                plotly_plot_with_image(
                    dffix,
                    trial,
                    to_plot_list=plotting_checkboxes_single_single_csv,
                    algo_choice=st.session_state["algo_choice_single_csv"],
                ),
                use_container_width=True,
            )
            st.plotly_chart(plot_y_corr(dffix, st.session_state["algo_choice_single_csv"]), use_container_width=True)
            plotlist = [x for x in dffix.columns if "Unnamed" not in str(x)]
            plot_choice = st.multiselect(
                "Which measures should be visualized?",
                plotlist,
                key="plot_choice_fix_measure",
                default=plotlist[-1],
            )
            st.plotly_chart(plot_fix_measure(dffix, plot_choice, "Index"), use_container_width=True)

        if "chars_list" in trial:
            analysis_expander_custom = single_file_tab_csv_tab.expander("Show Analysis results", True)
            with analysis_expander_custom.form("run_analysis_single_csv"):
                algo_choice_custom_eyekit = st.selectbox(
                    "Algorithm", st.session_state["algo_choice_single_csv"], index=None, key="algo_choice_custom_eyekit"
                )
                run_analysis_btn_custom_csv = st.form_submit_button("Run Analysis")
            if run_analysis_btn_custom_csv:
                st.session_state["algo_choice_analysis_single_csv"] = algo_choice_custom_eyekit
                (
                    y_diff,
                    x_txt_start,
                    y_txt_start,
                    font_face,
                    font_size,
                    line_height,
                ) = add_default_font_and_character_props_to_state(trial)
                font_size = set_font_from_chars_list(trial)
                st.session_state["from_trial_y_diff_for_eyekit_single_csv"] = y_diff
                st.session_state["from_trial_x_txt_start_for_eyekit_single_csv"] = x_txt_start
                st.session_state["from_trial_y_txt_start_for_eyekit_single_csv"] = y_txt_start
                st.session_state["from_trial_font_face_for_eyekit_single_csv"] = font_face
                st.session_state["from_trial_font_size_for_eyekit_single_csv"] = font_size
                st.session_state["from_trial_line_height_for_eyekit_single_csv"] = line_height
        if "algo_choice_analysis_single_csv" in st.session_state:
            own_analysis_tab_custom, eyekit_tab_custom = analysis_expander_custom.tabs(
                ["Analysis without eyekit", "Analysis using eyekit"]
            )
            with eyekit_tab_custom:
                eyekit_input(ending_str="_single_csv")

                fixations_tuples, textblock_input_dict, screen_size = ekm.get_fix_seq_and_text_block(
                    dffix,
                    trial,
                    x_txt_start=st.session_state["x_txt_start_for_eyekit_single_csv"],
                    y_txt_start=st.session_state["y_txt_start_for_eyekit_single_csv"],
                    font_face=st.session_state["font_face_for_eyekit_single_csv"],
                    font_size=st.session_state["font_size_for_eyekit_single_csv"],
                    line_height=st.session_state["line_height_for_eyekit_single_csv"],
                    use_corrected_fixations=True,
                    correction_algo=st.session_state["algo_choice_custom_eyekit"],
                )
                eyekitplot_img = ekm.eyekit_plot(fixations_tuples, textblock_input_dict, screen_size)
                st.image(eyekitplot_img, "Fixations and stimulus as used for anaylsis")

                with open(f'results/fixation_sequence_eyekit_{trial["trial_id"]}.json', "r") as f:
                    fixation_sequence_json = json.load(f)
                fixation_sequence_json_str = json.dumps(fixation_sequence_json)

                st.download_button(
                    "⏬ Download fixations in eyekits format",
                    fixation_sequence_json_str,
                    f'fixation_sequence_eyekit_{trial["trial_id"]}.json',
                    "json",
                    key="download_eyekit_fix_json_single_csv",
                    help="This downloads the extracted fixation information as a .json file in the eyekit format with the filename containing the subject name and trial id.",
                )

                with open(f'results/textblock_eyekit_{trial["trial_id"]}.json', "r") as f:
                    textblock_json = json.load(f)
                textblock_json_str = json.dumps(textblock_json)

                st.download_button(
                    "⏬ Download stimulus in eyekits format",
                    textblock_json_str,
                    f'textblock_eyekit_{trial["trial_id"]}.json',
                    "json",
                    key="download_eyekit_text_json_single_csv",
                    help="This downloads the extracted stimulus information as a .json file in the eyekit format with the filename containing the subject name and trial id.",
                )

                word_measures_df, character_measures_df = get_eyekit_measures(
                    fixations_tuples, textblock_input_dict, trial=trial, get_char_measures=False
                )

                st.dataframe(word_measures_df, use_container_width=True, hide_index=True, height=200)
                word_measures_df_csv = convert_df(word_measures_df)

                st.download_button(
                    "⏬ Download word measures data",
                    word_measures_df_csv,
                    f'{trial["trial_id"]}_word_measures_df.csv',
                    "text/csv",
                    key="word_measures_df_download_btn_single_csv",
                )
                measure_words = st.selectbox(
                    "Select measure to visualize", list(ekm.MEASURES_DICT.keys()), key="measure_words_single_csv"
                )
                st.image(ekm.plot_with_measure(fixations_tuples, textblock_input_dict, screen_size, measure_words))

                if character_measures_df is not None:
                    st.dataframe(character_measures_df, use_container_width=True, hide_index=True, height=200)

            with own_analysis_tab_custom:
                st.markdown(
                    "This analysis method does not require manual alignment and works when the automated stimulus coordinates are correct."
                )
                own_word_measures = get_all_measures(
                    trial,
                    dffix,
                    prefix="word",
                    use_corrected_fixations=True,
                    correction_algo=st.session_state["algo_choice_custom_eyekit"],
                    save_to_csv=True,
                )
                st.dataframe(own_word_measures, use_container_width=True, hide_index=True, height=200)
                own_word_measures_csv = convert_df(own_word_measures)

                st.download_button(
                    "⏬ Download word measures data",
                    own_word_measures_csv,
                    f'{trial["trial_id"]}_own_word_measures_df.csv',
                    "text/csv",
                    key="own_word_measures_df_download_btn",
                )
                measure_words_own = st.selectbox(
                    "Select measure to visualize",
                    list(own_word_measures.columns),
                    key="measure_words_own_single_csv",
                    index=own_word_measures.shape[1] - 1,
                )
                fix_to_plot = ["Corrected Fixations"]
                own_word_measures_fig, _, _ = matplotlib_plot_df(
                    dffix,
                    trial,
                    [st.session_state["algo_choice_custom_eyekit"]],
                    None,
                    box_annotations=own_word_measures[measure_words_own],
                    fix_to_plot=fix_to_plot,
                )
                st.pyplot(own_word_measures_fig)
    with multi_file_tab:
        st.subheader(
            "Upload one or more .asc files (Can be compressed). Then load configuration file or manually select desired options."
        )
        settings_to_save = {
            k.replace("_multi_asc", ""): v
            for (k, v) in st.session_state.items()
            if k
            in [
                "trial_start_keyword_multi_asc",
                "trial_end_keyword_multi_asc",
                "close_gap_between_words_multi_asc",
                "paragraph_trials_only_multi_asc",
                "discard_fixations_without_sfix_multi_asc",
                "discard_far_out_of_text_fix_multi_asc",
                "discard_blinks_fix_multi_asc",
                "outlier_crit_x_threshold_multi_asc",
                "outlier_crit_y_threshold_multi_asc",
                "discard_long_fix_multi_asc",
                "discard_long_fix_threshold_multi_asc",
                "choice_handle_short_and_close_fix_multi_asc",
                "merge_distance_threshold_multi_asc",
                "algo_choice_multi_asc",
                "use_multiprocessing_multi_asc",
                "fix_cols_to_add_multi_asc",
                "measures_to_calculate_multi_asc",
                "include_word_coords_in_output_multi_asc",
                "sent_measures_to_calculate_multi_asc",
                "save_files_for_each_trial_individually_multi_asc",
            ]
        }
        if len(settings_to_save) > 0:
            st.download_button(
                "⏬ Download all multi .asc file settings as JSON",
                json.dumps(settings_to_save),
                "settings_to_save_multi_asc.json",
                "json",
                key="download_settings_to_save_multi_asc",
                help="This downloads the configuration as a .json file and can be used to reload the settings later.",
            )
        with st.expander("Load config file."):
            with st.form("multi_asc_file_tab_asc_tab_load_settings_from_file_form"):
                st.file_uploader(
                    "Select .json config file to reload a previous processing configuration",
                    accept_multiple_files=False,
                    key="multi_asc_file_settings_file_uploaded",
                    type=["json"],
                    help="Load in a configuration file as .json to set the parameters below to the previously used configuration.",
                )
                cfg_load_btn_multi_asc = st.form_submit_button("Load in config")
        if cfg_load_btn_multi_asc and in_st_nn("multi_asc_file_settings_file_uploaded"):
            json_string = st.session_state["multi_asc_file_settings_file_uploaded"].getvalue().decode("utf-8")
            st.session_state["loaded_settings_multi_asc"] = {
                f"{k}_multi_asc": v for k, v in json.loads(json_string).items()
            }
            st.session_state.update(st.session_state["loaded_settings_multi_asc"])
    with multi_file_tab.expander("Upload files and choose configuration options.", True):
        with st.form("upload_and_config_form_multiu_asc"):
            multifile_col, multi_algo_col = st.columns((1, 1))

            with multifile_col:
                st.markdown("## File selection")
                multi_asc_filelist = st.file_uploader(
                    "Upload .asc Files",
                    accept_multiple_files=True,
                    key="multi_asc_filelist",
                    type=["asc", "tar", "zip"],
                    help="Drag and drop or select a one or multiple .asc files that you wish to process. For efficient uploading it is also supported that the .asc files are compressed into a .zip or .tar file.",
                )
                multi_asc_file_ias_files_uploaded = st.file_uploader(
                    "Upload all .ias files associated with the .asc files. Leave empty if you don't use .ias files.",
                    accept_multiple_files=True,
                    key="multi_asc_file_ias_files_uploaded",
                    type=["ias"],
                    help="If the stimulus information is not part of the .asc file then all .ias files associated with your .asc files should be put here. This will allow the program to align each trial found in the .asc files with the correct stimulus text by finding the .ias filename in the .asc file (Needs to be flagged with the 'IAREA FILE').",
                )

            with multi_algo_col:
                st.markdown("## Configuration")
                show_file_parsing_settings("_multi_asc")
                st.markdown("### Trial cleaning settings")
                discard_fixations_without_sfix = st.checkbox(
                    "Should fixations that start before trial start but end after be discarded?",
                    value=get_default_val("discard_fixations_without_sfix_multi_asc", True),
                    key="discard_fixations_without_sfix_multi_asc",
                    help="In cases where the trigger flag for the start of the trial occurs during a fixation, this setting determines wether that fixation is to be discarded or kept.",
                )
                discard_blinks_fix_multi_asc = st.checkbox(
                    "Should fixations that happen just before or after a blink event be discarded?",
                    value=get_def_val_w_underscore("discard_blinks_fix_multi_asc", True, [True, False]),
                    key="discard_blinks_fix_multi_asc",
                    help="This determines if fixations that occur just after or just before a detected blink are discarded and therefore excluded from analysis.",
                )
                discard_far_out_of_text_fix_multi_asc = st.checkbox(
                    "Should fixations that are far outside the text be discarded? (set margins below)",
                    value=get_default_val("discard_far_out_of_text_fix_multi_asc", True),
                    key="discard_far_out_of_text_fix_multi_asc",
                    help="Using the thresholds set below this option determines whether fixations that are further outside the text lines in both horizontal and vertical direction should be discarded.",
                )
                outlier_crit_x_threshold_multi_asc = st.number_input(
                    "Maximum horizontal distance from first/last character on line (in character widths)",
                    min_value=0.0,
                    max_value=20.0,
                    value=2.0,
                    step=0.25,
                    key="outlier_crit_x_threshold_multi_asc",
                    help=r"This option is used to set the maximum horizontal distance a fixation can have from the edges of a line of text before it will be considered to be far outside the text. This distance uses the average character width found in the stimulus text as a unit with the smallest increment being 25 % of this width.",
                )
                outlier_crit_y_threshold_multi_asc = st.number_input(
                    "Maximum vertical distance from top/bottom of line (in line heights)",
                    min_value=0.0,
                    max_value=5.0,
                    value=0.5,
                    step=0.05,
                    key="outlier_crit_y_threshold_multi_asc",
                    help=r"This option is used to set the maximum vertical distance a fixation can have from the top and bottom edges of a line of text before it will be considered to be far outside the text. This distance uses the unit of average line height and the smallest increment is 5 % of this height.",
                )

                discard_long_fix_multi_asc = st.checkbox(
                    "Should long fixations be discarded? (set threshold below)",
                    value=get_default_val("discard_long_fix_multi_asc", True),
                    key="discard_long_fix_multi_asc",
                    help="If this option is selected, overly long fixations will be discarded. What is considered an overly long fixation is determined by the duration threshold set below.",
                )
                discard_long_fix_threshold_multi_asc = st.number_input(
                    "Maximum duration allowed for fixations (ms)",
                    min_value=20,
                    max_value=3000,
                    value=DEFAULT_LONG_FIX_THRESHOLD,
                    step=5,
                    key="discard_long_fix_threshold_multi_asc",
                    help="Fixations longer than this duration will be considered overly long fixations.",
                )

                choice_handle_short_and_close_fix_multi_asc = st.radio(
                    "How should short fixations be handled?",
                    SHORT_FIX_CLEAN_OPTIONS,
                    index=get_default_index("choice_handle_short_and_close_fix_multi_asc", SHORT_FIX_CLEAN_OPTIONS, 1),
                    key="choice_handle_short_and_close_fix_multi_asc",
                    help="Merge: merges with either previous or next fixation and discards it if it is the last fixation and below the threshold. Merge then discard first tries to merge short fixations and then discards any short fixations that could not be merged. Discard simply discards all short fixations.",
                )
                short_fix_threshold_multi_asc = st.number_input(
                    "Minimum fixation duration (ms)",
                    min_value=1,
                    max_value=500,
                    value=get_default_val("short_fix_threshold_multi_asc", 80),
                    key="short_fix_threshold_multi_asc",
                    help="Fixations shorter than this duration will be considered short fixations.",
                )
                merge_distance_threshold_multi_asc = st.number_input(
                    "Maximum distance between fixations when merging (in character widths)",
                    min_value=1,
                    max_value=20,
                    value=get_default_val("merge_distance_threshold_multi_asc", DEFAULT_MERGE_DISTANCE_THRESHOLD),
                    key="merge_distance_threshold_multi_asc",
                    help="When merging short fixations this is the maximum allowed distance between them.",
                )
                st.markdown("### Line assignment settings")

                algo_choice_multi_asc = st.multiselect(
                    "Choose line-assignment algorithms",
                    ALGO_CHOICES,
                    key="algo_choice_multi_asc",
                    default=get_default_val("algo_choice_multi_asc", DEFAULT_ALGO_CHOICE),
                    help="This selection determines which of the available line assignment algorithms should be used to assign each fixation to their most appropriate line of text. The rest of the analysis is dependent on this line assignment. It is recommended to try out multiple different assignment approaches to make sure it performs well for on your data.",
                )
                st.markdown("### Analysis settings")
                fix_cols_to_add_multi_asc = st.multiselect(
                    "Select what fixation measures to calculate.",
                    options=ALL_FIX_MEASURES,
                    key="fix_cols_to_add_multi_asc",
                    default=get_default_val("fix_cols_to_add_multi_asc", DEFAULT_FIX_MEASURES),
                    help="This selection determines what fixation-level measures will be calculated. If you are in doubt about which ones you might need for your analysis, you can select all of them since it only slightly adds to the processing time.",
                )
                measures_to_calculate_multi_asc = st.multiselect(
                    "Select what word measures to calculate.",
                    options=ALL_MEASURES_OWN,
                    key="measures_to_calculate_multi_asc",
                    default=get_default_val("measures_to_calculate_multi_asc", DEFAULT_WORD_MEASURES),
                    help="This selection determines which of the supported word-level measures should be calculated.",
                )
                include_word_coords_in_output_multi_asc = st.checkbox(
                    "Should word bounding box coordinates be included in the measures table?",
                    value=get_default_val("include_word_coords_in_output_multi_asc", False),
                    key="include_word_coords_in_output_multi_asc",
                    help="Determines if the bounding box coordinates should be included in the word measures dataframe.",
                )

                sent_measures_to_calculate_multi_asc = st.multiselect(
                    "Select what sentence measures to calculate.",
                    options=ALL_SENT_MEASURES,
                    key="sent_measures_to_calculate_multi_asc",
                    default=get_default_val("sent_measures_to_calculate_multi_asc", DEFAULT_SENT_MEASURES),
                    help="This selection determines which of the supported sentence-level measures should be calculated.",
                )
                st.markdown("### Multiprocessing setting")
                use_multiprocessing_multi_asc = st.checkbox(
                    "Process trials in parallel (fast but experimental)",
                    value=get_default_val("use_multiprocessing_multi_asc", True),
                    key="use_multiprocessing_multi_asc",
                    help="This determines whether multiprocessing is used for processing the trials in an .asc file in parallel. This can significantly speed up processing but will not show a progress bar for each trial. If it fails the program will fall back to a single process.",
                )
                save_files_for_each_trial_individually_multi_asc = st.checkbox(
                    "Save fixations, saccades, stimulus and metadata for each trial to a seperate file.",
                    value=get_default_val("save_files_for_each_trial_individually_multi_asc", False),
                    key="save_files_for_each_trial_individually_multi_asc",
                    help="This setting determines if the results for each trial will be saved as an individual file or just be recorded as part of the overall output dataframes.",
                )
            st.markdown("### Click to run")
            process_trial_btn_multi = st.form_submit_button(
                "🚀 Process files",
                help="Using the configuration set above this button will start the processing of all trials in all .asc files. The results will be displayed below once completed. Depending on the number of trials, this can take several minutes.",
            )
        if process_trial_btn_multi and not (
            "multi_asc_filelist" in st.session_state and len(st.session_state["multi_asc_filelist"]) > 0
        ):
            st.warning("Please upload files to run processing.")
        if (
            process_trial_btn_multi
            and "multi_asc_filelist" in st.session_state
            and len(st.session_state["multi_asc_filelist"]) > 0
        ):
            if "dffix_multi_asc" in st.session_state:
                del st.session_state["dffix_multi_asc"]

            if "results" in st.session_state:
                st.session_state["results"] = {}

            if st.session_state["trial_start_keyword_multi_asc"] == "custom":
                trial_start_keyword_multi_asc = st.session_state["trial_custom_start_keyword_multi_asc"]
            else:
                trial_start_keyword_multi_asc = st.session_state["trial_start_keyword_multi_asc"]
            if st.session_state["trial_end_keyword_multi_asc"] == "custom":
                end_trial_at_keyword_multi_asc = st.session_state["trial_custom_end_keyword_multi_asc"]
            else:
                end_trial_at_keyword_multi_asc = st.session_state["trial_end_keyword_multi_asc"]
            (
                list_of_trial_lists,
                _,
                results_keys,
                zipfiles_with_results,
                all_fix_dfs_concat,
                all_sacc_dfs_concat,
                all_chars_dfs_concat,
                all_words_dfs_concat,
                all_sentence_dfs_concat,
                all_trials_by_subj,
                trials_summary,
                subjects_summary,
                trials_quick_meta_df,
            ) = process_all_asc_files(
                asc_files=multi_asc_filelist,
                algo_choice_multi_asc=algo_choice_multi_asc,
                ias_files=multi_asc_file_ias_files_uploaded,
                close_gap_between_words=st.session_state["close_gap_between_words_multi_asc"],
                trial_start_keyword=trial_start_keyword_multi_asc,
                end_trial_at_keyword=end_trial_at_keyword_multi_asc,
                paragraph_trials_only=st.session_state["paragraph_trials_only_multi_asc"],
                choice_handle_short_and_close_fix=choice_handle_short_and_close_fix_multi_asc,
                discard_fixations_without_sfix=discard_fixations_without_sfix,
                discard_far_out_of_text_fix=discard_far_out_of_text_fix_multi_asc,
                x_thres_in_chars=outlier_crit_x_threshold_multi_asc,
                y_thresh_in_heights=outlier_crit_y_threshold_multi_asc,
                short_fix_threshold=short_fix_threshold_multi_asc,
                merge_distance_threshold=merge_distance_threshold_multi_asc,
                discard_long_fix=discard_long_fix_multi_asc,
                discard_long_fix_threshold=discard_long_fix_threshold_multi_asc,
                discard_blinks=discard_blinks_fix_multi_asc,
                measures_to_calculate_multi_asc=measures_to_calculate_multi_asc,
                include_coords_multi_asc=include_word_coords_in_output_multi_asc,
                sent_measures_to_calculate_multi_asc=sent_measures_to_calculate_multi_asc,
                use_multiprocessing=use_multiprocessing_multi_asc,
                fix_cols_to_add_multi_asc=fix_cols_to_add_multi_asc,
                save_files_for_each_trial_individually=save_files_for_each_trial_individually_multi_asc,
            )
            if trials_summary is not None:
                st.session_state["trials_summary_df_multi_asc"] = trials_summary
            if subjects_summary is not None:
                st.session_state["subjects_summary_df_multi_asc"] = subjects_summary

            st.session_state["list_of_trial_lists"] = list_of_trial_lists
            st.session_state["trial_choices_multi_asc"] = results_keys
            st.session_state["zipfiles_with_results"] = zipfiles_with_results
            st.session_state["all_fix_dfs_concat_multi_asc"] = all_fix_dfs_concat
            st.session_state["all_sacc_dfs_concat_multi_asc"] = all_sacc_dfs_concat
            st.session_state["all_chars_dfs_concat_multi_asc"] = all_chars_dfs_concat
            st.session_state["all_words_dfs_concat_multi_asc"] = all_words_dfs_concat
            st.session_state["all_sentence_dfs_concat_multi_asc"] = all_sentence_dfs_concat
            offload_list = [
                "gaze_df",
                "dffix",
                "chars_df",
                "saccade_df",
                "x_char_unique",
                "line_heights",
                "chars_list",
                "words_list",
                "dffix_sacdf_popEye",
                "fixdf_popEye",
                "saccade_df",
                "sacdf_popEye",
                "combined_df",
                "events_df",
            ]
            st.session_state["all_trials_by_subj"] = {
                k_outer: {
                    k: {prop: val for prop, val in v.items() if prop not in offload_list} for k, v in v_outer.items()
                }
                for k_outer, v_outer in all_trials_by_subj.items()
            }
            subs_str = "-".join([s for s in all_trials_by_subj.keys()])
            st.session_state["trials_df"] = trials_quick_meta_df.drop_duplicates().dropna(subset="text", axis=0)
            st.session_state["trials_df"].to_csv(RESULTS_FOLDER / f"{subs_str}_comb_items_lines_text.csv")
            if "text_with_newlines" in st.session_state["trials_df"].columns:
                st.session_state["trials_df"] = (
                    st.session_state["trials_df"].drop(columns=["text_with_newlines"]).copy()
                )
            st.session_state["all_own_word_measures_concat"] = all_words_dfs_concat

    if in_st_nn("all_fix_dfs_concat_multi_asc"):
        if "all_trials_by_subj" in st.session_state:
            multi_file_tab.markdown("### All meta data by subject and trial")
            multi_file_tab.json(st.session_state["all_trials_by_subj"], expanded=False)
        multi_file_tab.markdown("### Item level stimulus overview")
        with multi_file_tab.popover("Column names definitions", help="Show column names and their definitions."):
            item_colnames_markdown = read_item_col_names()
            st.markdown(item_colnames_markdown)
        multi_file_tab.dataframe(st.session_state["trials_df"], use_container_width=True, height=200)
        if in_st_nn("subjects_summary_df_multi_asc"):
            multi_file_tab.markdown("### Subject level summary statistics")
            with multi_file_tab.popover("Column names definitions", help="Show column names and their definitions."):
                subject_measure_colnames_markdown = read_subject_meas_col_names()
                st.markdown(subject_measure_colnames_markdown)
            multi_file_tab.dataframe(
                st.session_state["subjects_summary_df_multi_asc"], use_container_width=True, height=200
            )
        if in_st_nn("trials_summary_df_multi_asc"):
            multi_file_tab.markdown("### Trial level summary statistics")
            with multi_file_tab.popover("Column names definitions", help="Show column names and their definitions."):
                trials_colnames_markdown = read_trial_col_names()
                st.markdown(trials_colnames_markdown)
            multi_file_tab.dataframe(
                st.session_state["trials_summary_df_multi_asc"], use_container_width=True, height=200
            )

        multi_file_tab.markdown("### Combined fixations dataframe and fixation level features")
        with multi_file_tab.popover("Column name definitions"):
            fix_colnames_markdown = get_fix_colnames_markdown()
            st.markdown(fix_colnames_markdown)
        multi_file_tab.dataframe(st.session_state["all_fix_dfs_concat_multi_asc"], use_container_width=True, height=200)

        high_fix_count_dfs = []
        for algo_choice in st.session_state["algo_choice_multi_asc"]:
            fixation_counts = (
                st.session_state["all_fix_dfs_concat_multi_asc"]
                .loc[:, ["subject", "trial_id", f"on_word_number_{algo_choice}", f"on_word_{algo_choice}"]]
                .value_counts()
                .sort_values(ascending=False)
            )
            high_fixation_words = fixation_counts[fixation_counts >= 7].index
            high_fix_count_dfs.append(
                fixation_counts[high_fixation_words]
                .reset_index(name=f"assigned_fixations_{algo_choice}")
                .rename({f"on_word_number_{algo_choice}": "word_number", f"on_word_{algo_choice}": "word"}, axis=1)
            )
        if len(high_fix_count_dfs) > 1:
            merged_df = high_fix_count_dfs[0]
            for df in high_fix_count_dfs[1:]:
                merged_df = pd.merge(merged_df, df, how="outer", on=["subject", "trial_id", "word_number", "word"])
            high_fix_count_dfs_cat = merged_df
        else:
            high_fix_count_dfs_cat = high_fix_count_dfs[0]
        if not high_fix_count_dfs_cat.empty:
            multi_file_tab.warning(
                "Some words had a large number of fixations assigned to them.  If this seems incorrect please adjust the correction algorithm."
            )
            multi_file_tab.markdown(
                "### Words that had a large number of fixations assigned to them and may need to be investigated"
            )
            multi_file_tab.dataframe(high_fix_count_dfs_cat, use_container_width=True, height=200)
            subs_str = "-".join([s for s in st.session_state["all_trials_by_subj"].keys()])
            high_fix_count_dfs_cat.to_csv(RESULTS_FOLDER / f"{subs_str}_words_with_many_fixations.csv")

        if "all_correction_stats" in st.session_state:
            multi_file_tab.markdown("### Correction statistics")
            multi_file_tab.dataframe(st.session_state["all_correction_stats"], use_container_width=True, height=200)
        multi_file_tab.markdown("### Combined saccades dataframe and saccade level features")
        with multi_file_tab.popover("Column name definitions"):
            sac_colnames_markdown = get_sac_colnames_markdown()
            st.markdown(sac_colnames_markdown)
        multi_file_tab.dataframe(
            st.session_state["all_sacc_dfs_concat_multi_asc"], use_container_width=True, height=200
        )
        multi_file_tab.markdown("### Combined characters dataframe")
        with multi_file_tab.popover("Column names definitions", help="Show column names and their definitions."):
            chars_colnames_markdown = read_chars_col_names()
            st.markdown(chars_colnames_markdown)
        multi_file_tab.dataframe(
            st.session_state["all_chars_dfs_concat_multi_asc"], use_container_width=True, height=200
        )

        if not st.session_state["all_own_word_measures_concat"].empty:
            multi_file_tab.markdown("### Combined words dataframe and word level features")
            with multi_file_tab.popover("Column names definitions", help="Show column names and their definitions."):
                word_measure_colnames_markdown = read_word_meas_col_names()
                st.markdown(word_measure_colnames_markdown)
            multi_file_tab.dataframe(
                st.session_state["all_own_word_measures_concat"], use_container_width=True, height=200
            )
        if not st.session_state["all_sentence_dfs_concat_multi_asc"].empty:
            multi_file_tab.markdown("### Combined sentence dataframe and sentence level features")
            with multi_file_tab.popover("Column names definitions", help="Show column names and their definitions."):
                sentence_measure_colnames_markdown = read_sent_meas_col_names()
                st.markdown(sentence_measure_colnames_markdown)
            multi_file_tab.dataframe(
                st.session_state["all_sentence_dfs_concat_multi_asc"], use_container_width=True, height=200
            )
    if "zipfiles_with_results" in st.session_state:
        multi_res_col1, multi_res_col2 = multi_file_tab.columns(2)

        chosen_zip = multi_res_col1.selectbox("Choose results to download", st.session_state["zipfiles_with_results"])
        zipnamestem = pl.Path(chosen_zip).stem
        with open(chosen_zip, "rb") as f:
            multi_res_col2.download_button(f"⏬ Download {zipnamestem}.zip", f, file_name=f"results_{zipnamestem}.zip")

    if "trial_choices_multi_asc" in st.session_state:

        with multi_file_tab.form(key="multi_file_tab_trial_select_form"):
            multi_plotting_options_col1, multi_plotting_options_col2 = st.columns(2)

            trial_choice_multi = multi_plotting_options_col1.selectbox(
                "Which trial should be plotted?",
                st.session_state["trial_choices_multi_asc"],
                key="trial_id_multi_asc",
                placeholder="Select trial to display and plot",
                help="Choose one of the available trials from the list displayed.",
            )

            plotting_checkboxes_multi = multi_plotting_options_col2.multiselect(
                "Select what gets plotted",
                STIM_FIX_PLOT_OPTIONS,
                default=["Uncorrected Fixations", "Corrected Fixations", "Characters", "Word boxes"],
                key="plotting_checkboxes_multi_asc",
                help="This selection determines what information is plotted. The Corrected Fixations are the fixations after being snapped to their assigned line of text. The Word and Character boxes are the bounding boxes for the stimulus.",
            )
            process_trial_btn_multi = st.form_submit_button("Plot and analyse trial")

        if process_trial_btn_multi:
            dffix = st.session_state["results"][trial_choice_multi]["dffix"]
            st.session_state["dffix_multi_asc"] = dffix
            st.session_state["trial_multi_asc"] = st.session_state["results"][trial_choice_multi]["trial"]
            if "words_df" in st.session_state["results"][trial_choice_multi]:
                st.session_state["own_word_measures_multi_asc"] = st.session_state["results"][trial_choice_multi][
                    "words_df"
                ]
            if "sent_measures_multi" in st.session_state["results"][trial_choice_multi]:
                st.session_state["sentence_measures_multi_asc"] = st.session_state["results"][trial_choice_multi][
                    "sent_measures_multi"
                ]

        if "dffix_multi_asc" in st.session_state and "trial_multi_asc" in st.session_state:
            dffix_multi = st.session_state["dffix_multi_asc"]
            trial_multi = st.session_state["trial_multi_asc"]
            saccade_df_multi = pd.DataFrame(trial_multi["saccade_df"])
            trial_expander_multi = multi_file_tab.expander("Show Trial Information", False)
            show_cleaning_results(
                multi_file_tab,
                trial=trial_multi,
                expander_text="Show Cleaned Fixations Dataframe",
                dffix_cleaned=dffix_multi,
                dffix_no_clean_name="dffix_no_clean",
                expander_open=False,
                key_str="multi_asc",
            )
            dffix_expander_multi = multi_file_tab.expander("Show Fixations Dataframe", False)

            with dffix_expander_multi.popover("Column name definitions"):
                fix_colnames_markdown = get_fix_colnames_markdown()
                st.markdown(fix_colnames_markdown)
            saccade_df_expander_multi = multi_file_tab.expander("Show Saccade Dataframe", False)
            df_stim_expander_multi = multi_file_tab.expander("Show Stimulus Dataframe", False)
            plot_expander_multi = multi_file_tab.expander("Show corrected fixation plots", True)

            dffix_expander_multi.dataframe(dffix_multi, height=200)
            saccade_df_expander_multi.dataframe(saccade_df_multi, height=200)

            filtered_trial = filter_trial_for_export(trial_multi)
            trial_expander_multi.json(filtered_trial)
            df_stim_expander_multi.dataframe(pd.DataFrame(trial_multi["chars_list"]), height=200)

            show_fix_sacc_plots_multi_asc = plot_expander_multi.checkbox(
                "Show plots", True, "show_fix_sacc_plots_multi_asc"
            )
            if show_fix_sacc_plots_multi_asc:
                selecte_plotting_font_multi_asc = plot_expander_multi.selectbox(
                    "Font to use for plotting",
                    AVAILABLE_FONTS,
                    index=FONT_INDEX,
                    key="selected_plotting_font_multi_asc_single_plot",
                    help="This selects which font is used to display the words or characters making up the stimulus. This selection only affects the plot and has no effect on the analysis as everything else is based on the bounding boxes of the words and characters.",
                )
                plot_expander_multi.plotly_chart(
                    plotly_plot_with_image(
                        dffix_multi,
                        trial_multi,
                        st.session_state["algo_choice_multi_asc"],
                        to_plot_list=plotting_checkboxes_multi,
                        font=selecte_plotting_font_multi_asc,
                    ),
                    use_container_width=True,
                )
                plot_expander_multi.plotly_chart(
                    plot_y_corr(dffix_multi, st.session_state["algo_choice_multi_asc"]), use_container_width=True
                )

                select_and_show_fix_sacc_feature_plots(
                    dffix_multi,
                    saccade_df_multi,
                    plot_expander_multi,
                    plot_choice_fix_feature_name="plot_choice_fix_features_multi",
                    plot_choice_sacc_feature_name="plot_choice_sacc_features_multi",
                    feature_plot_selection="feature_plot_selection_multi_asc",
                    plot_choice_fix_sac_feature_x_axis_name="feature_plot_x_selection_multi_asc",
                )
            if "chars_list" in trial_multi:
                analysis_expander_multi = multi_file_tab.expander("Show Analysis results", True)
                analysis_expander_multi.selectbox(
                    "Algorithm",
                    st.session_state["algo_choice_multi_asc"],
                    index=0,
                    key="algo_choice_multi_asc_eyekit",
                    help="If more than one line assignment algorithm was selected above, this selection determines which of the resulting line assignments should be used for the analysis.",
                )
                own_analysis_tab, eyekit_tab = analysis_expander_multi.tabs(
                    ["Analysis without eyekit", "Analysis using eyekit"]
                )

                with eyekit_tab:
                    eyekit_input(ending_str="_multi_asc")

                    fixations_tuples, textblock_input_dict, screen_size = ekm.get_fix_seq_and_text_block(
                        st.session_state["dffix_multi_asc"],
                        trial_multi,
                        x_txt_start=st.session_state["x_txt_start_for_eyekit_multi_asc"],
                        y_txt_start=st.session_state["y_txt_start_for_eyekit_multi_asc"],
                        font_face=st.session_state["font_face_for_eyekit_multi_asc"],
                        font_size=st.session_state["font_size_for_eyekit_multi_asc"],
                        line_height=st.session_state["line_height_for_eyekit_multi_asc"],
                        use_corrected_fixations=True,
                        correction_algo=st.session_state["algo_choice_multi_asc_eyekit"],
                    )
                    eyekitplot_img = ekm.eyekit_plot(fixations_tuples, textblock_input_dict, screen_size)
                    st.image(eyekitplot_img, "Fixations and stimulus as used for anaylsis")

                    with open(f'results/fixation_sequence_eyekit_{trial_multi["trial_id"]}.json', "r") as f:
                        fixation_sequence_json = json.load(f)
                    fixation_sequence_json_str = json.dumps(fixation_sequence_json)

                    st.download_button(
                        "⏬ Download fixations in eyekits format",
                        fixation_sequence_json_str,
                        f'fixation_sequence_eyekit_{trial_multi["trial_id"]}.json',
                        "json",
                        key="download_eyekit_fix_json_multi_asc",
                        help="This downloads the extracted fixation information as a .json file in the eyekit format with the filename containing the subject name and trial id.",
                    )

                    with open(f'results/textblock_eyekit_{trial_multi["trial_id"]}.json', "r") as f:
                        textblock_json = json.load(f)
                    textblock_json_str = json.dumps(textblock_json)

                    st.download_button(
                        "⏬ Download stimulus in eyekits format",
                        textblock_json_str,
                        f'textblock_eyekit_{trial_multi["trial_id"]}.json',
                        "json",
                        key="download_eyekit_text_json_multi_asc",
                        help="This downloads the extracted stimulus information as a .json file in the eyekit format with the filename containing the subject name and trial id.",
                    )

                    word_measures_df, character_measures_df = get_eyekit_measures(
                        fixations_tuples, textblock_input_dict, trial=trial_multi, get_char_measures=False
                    )

                    st.dataframe(word_measures_df, use_container_width=True, hide_index=True, height=200)
                    word_measures_df_csv = convert_df(word_measures_df)

                    st.download_button(
                        "⏬ Download word measures data",
                        word_measures_df_csv,
                        f'{trial_multi["trial_id"]}_word_measures_df.csv',
                        "text/csv",
                        key="word_measures_df_download_btn_multi_asc",
                        help="This downloads the word-level measures as a .csv file with the filename containing the trial id.",
                    )
                    options = list(ekm.MEASURES_DICT.keys())
                    measure_words = st.selectbox(
                        "Select measure to visualize",
                        options,
                        key="measure_words_multi_asc",
                        help="This selection determines which of the calculated word-level features should be visualized by displaying the value to the corresponding word bounding box.",
                        index=get_default_index("measure_words_multi_asc", options, 0),
                    )
                    st.image(ekm.plot_with_measure(fixations_tuples, textblock_input_dict, screen_size, measure_words))

                    if character_measures_df is not None:
                        st.dataframe(character_measures_df, use_container_width=True, hide_index=True, height=200)

                with own_analysis_tab:
                    st.markdown(
                        "This analysis method does not require manual alignment and works when the automated stimulus coordinates are correct."
                    )
                    if "own_word_measures_multi_asc" in st.session_state:
                        own_word_measures = st.session_state["own_word_measures_multi_asc"]
                    else:
                        own_word_measures = get_all_measures(
                            st.session_state["trial_multi_asc"],
                            st.session_state["dffix_multi_asc"],
                            prefix="word",
                            use_corrected_fixations=True,
                            correction_algo=st.session_state["algo_choice_multi_asc_eyekit"],
                            save_to_csv=True,
                        )
                    if "sentence_measures_multi_asc" in st.session_state:
                        sent_measures_multi = st.session_state["sentence_measures_multi_asc"]
                    else:
                        sent_measures_multi = compute_sentence_measures(
                            st.session_state["dffix_multi_asc"],
                            pd.DataFrame(st.session_state["trial_multi_asc"]["chars_df"]),
                            st.session_state["algo_choice_multi_asc_eyekit"],
                            DEFAULT_SENT_MEASURES,
                            save_to_csv=True,
                        )
                    st.markdown("Word measures")
                    own_word_measures = reorder_columns(own_word_measures)
                    if "question_correct" in own_word_measures.columns:
                        own_word_measures = own_word_measures.drop(columns=["question_correct"])
                    st.dataframe(own_word_measures, use_container_width=True, hide_index=True, height=200)
                    own_word_measures_csv = convert_df(own_word_measures)
                    st.download_button(
                        "⏬ Download word measures data",
                        own_word_measures_csv,
                        f'{st.session_state["trial_multi_asc"]["trial_id"]}_own_word_measures_df.csv',
                        "text/csv",
                        key="own_word_measures_df_download_btn_multi_asc",
                        help="This downloads the word-level measures as a .csv file with the filename containing the trial id.",
                    )
                    measure_words_own = st.selectbox(
                        "Select measure to visualize",
                        list(own_word_measures.columns),
                        key="measure_words_own_multi_asc",
                        help="This selection determines which of the calculated word-level features should be visualized by displaying the value to the corresponding word bounding box.",
                        index=own_word_measures.shape[1] - 1,
                    )
                    fix_to_plot = ["Corrected Fixations"]
                    own_word_measures_fig, _, _ = matplotlib_plot_df(
                        st.session_state["dffix_multi_asc"],
                        st.session_state["trial_multi_asc"],
                        [st.session_state["algo_choice_multi_asc_eyekit"]],
                        None,
                        box_annotations=own_word_measures[measure_words_own],
                        fix_to_plot=fix_to_plot,
                    )
                    st.pyplot(own_word_measures_fig)
                    st.markdown("Sentence measures")
                    st.dataframe(sent_measures_multi, use_container_width=True, hide_index=True, height=200)

            else:
                multi_file_tab.warning("🚨 Stimulus information needed for analysis 🚨")
    if "rerun_done" not in st.session_state:
        st.session_state["rerun_done"] = True
        if hasattr(st, "rerun"):
            st.rerun()
        elif hasattr(st, "experimental_rerun"):
            st.experimental_rerun()


def check_for_large_number_of_fixations_on_word(dffix, single_file_tab_asc_tab, algo_choices):
    high_fix_count_dfs = []
    if "dffix_single_asc" in st.session_state:
        for algo_choice in algo_choices:
            fixation_counts = (
                dffix.loc[:, [f"on_word_number_{algo_choice}", f"on_word_{algo_choice}"]]
                .value_counts()
                .sort_values(ascending=False)
            )
            high_fixation_words = fixation_counts[fixation_counts >= 7].index
            high_fix_count_dfs.append(
                fixation_counts[high_fixation_words].reset_index(name=f"assigned_fixations_{algo_choice}")
            )
            for word, count in zip(high_fixation_words, fixation_counts[high_fixation_words]):
                single_file_tab_asc_tab.warning(
                    f'For algorithm {algo_choice} the word "{word[1]}" (number {int(word[0])}) has had {count} fixations assigned to it. If this seems incorrect please adjust the correction algorithm.'
                )
    return pd.concat(high_fix_count_dfs, axis=0).reset_index(drop=True)


@st.cache_data
def read_sent_meas_col_names():
    with open("sentence_measures.md", "r") as f:
        sentence_measure_colnames_markdown = "\n".join(f.readlines())
    return sentence_measure_colnames_markdown


@st.cache_data
def read_subject_meas_col_names():
    with open("subject_measures.md", "r") as f:
        subject_measures_colnames_markdown = "\n".join(f.readlines())
    return subject_measures_colnames_markdown


@st.cache_data
def read_word_meas_col_names():
    with open("word_measures.md", "r") as f:
        word_measure_colnames_markdown = "\n".join(f.readlines())
    return word_measure_colnames_markdown


@st.cache_data
def read_chars_col_names():
    with open("chars_df_columns.md", "r") as f:
        chars_colnames_markdown = "\n".join(f.readlines())
    return chars_colnames_markdown


@st.cache_data
def read_item_col_names():
    with open("item_df_columns.md", "r") as f:
        item_colnames_markdown = "\n".join(f.readlines())
    return item_colnames_markdown


@st.cache_data
def read_trial_col_names():
    with open("trials_df_columns.md", "r") as f:
        trial_colnames_markdown = "\n".join(f.readlines())
    return trial_colnames_markdown


@st.cache_data
def get_fix_colnames_markdown():
    with open("fixations_df_columns.md", "r") as f:
        fix_colnames_markdown = "\n".join(f.readlines())
    return fix_colnames_markdown


@st.cache_data
def get_sac_colnames_markdown():
    with open("saccades_df_columns.md", "r") as f:
        sac_colnames_markdown = "\n".join(f.readlines())
    return sac_colnames_markdown


def show_file_parsing_settings(suffix: str):
    st.markdown("### File parsing settings")
    st.selectbox(
        label="Keyword in .asc file indicating start of a trial.",
        options=START_KEYWORD_OPTIONS,
        index=0,
        key=f"trial_start_keyword{suffix}",
        help="This list contains the most common keywords used in .asc files to indicate the start of a trial. If you are unsure which one to use, open an .asc file and check when these keywords occur in relation to your text stimulus presentation. It is recommendable to use a keyword that occurs directly before the text stimulus appears. You can add a custom keyword by selecting 'custom' and entering it in the field below.",
    )
    st.text_input(
        "Custom trial start keyword",
        key=f"trial_custom_start_keyword{suffix}",
        help="If the 'custom' option is selected above, this keyword will be used to find the start timestamp of the trials in the .asc file. If keyword is not found it will default to 'START'",
    )
    st.selectbox(
        label="Keyword in .asc file indicating end of a trial.",
        options=END_KEYWORD_OPTIONS,
        index=0,
        key=f"trial_end_keyword{suffix}",
        help="This list contains the most common keywords used in .asc files to indicate the end of a trial. If you are unsure which one to use, open an .asc file and check when these keywords occur in relation to your text stimulus presentation. It is recommendable to use a keyword that occurs directly after the text stimulus disappears. You can add a custom keyword by selecting 'custom' and entering it in the field below.",
    )
    st.text_input(
        "Custom trial end keyword",
        key=f"trial_custom_end_keyword{suffix}",
        help="If the 'custom' option is selected above, this keyword will be used to find the end timestamp of the trials in the .asc file. If keyword is not found it will default to 'TRIAL_RESULT'",
    )
    st.checkbox(
        label="Should spaces between words be included in word bounding box?",
        value=get_default_val(f"close_gap_between_words{suffix}", True),
        key=f"close_gap_between_words{suffix}",
        help="If this is selected, each word bounding box will include half the spaces between adjacent words. If not, the word bounding boxes will simply be the combined bounding boxes of the letters making up the word.",  # TODO check if this affects analysis
    )
    st.markdown("### Trial filtering settings")

    st.checkbox(
        label="Should Practice and question trials be excluded if possible?",
        value=get_default_val(f"paragraph_trials_only{suffix}", True),
        key=f"paragraph_trials_only{suffix}",
        help="This option will restrict the trials that are used for processing to the 'paragraph' trials and therefore exclude practice and question trials. This relies on either the trial id following the convention of question trials starting with the letter 'F' and practice trials starting with the letter 'P' or by trials being marked as practice or paragraph in the lines of the .asc file marked with 'TRIAL_VAR'.",
    )


def get_summaries_from_trials(all_trials_by_subj):
    keep_list = ["condition", "item", "text"]
    correction_summary_list_all_multi = []
    cleaning_summary_list_all_multi = []
    trials_quick_meta_list = []
    for subj, v_subj in all_trials_by_subj.items():
        for trial_id, v_trials in v_subj.items():
            if "questions_summary" not in trial_id:
                record = {}
                for k, v in v_trials.items():
                    if k in keep_list:
                        record[k] = v
                    if k == "line_list":
                        record["text_with_newlines"] = "\n".join(v)
                    if k == "Fixation Cleaning Stats":
                        clean_rec = {"subject": subj, "trial_id": trial_id}
                        clean_rec.update(v)
                        cleaning_summary_list_all_multi.append(clean_rec)
                    if k == "average_y_corrections":
                        if isinstance(v, pd.DataFrame):
                            v_dict = v.to_dict("records")
                        else:
                            v_dict = v
                        correction_info_dict = {
                            "subject": subj,
                            "trial_id": trial_id,
                        }
                        for v_sub in v_dict:
                            correction_info_dict.update(
                                {f"average_y_correction_{v_sub['Algorithm']}": v_sub["average_y_correction"]}
                            )
                        correction_summary_list_all_multi.append(correction_info_dict)
                trials_quick_meta_list.append(record)
    return (
        pd.DataFrame(correction_summary_list_all_multi),
        pd.DataFrame(cleaning_summary_list_all_multi),
        pd.DataFrame(trials_quick_meta_list),
    )


def process_single_dffix_and_add_to_state(ending_str: str):
    cp2st(f"algo_choice{ending_str}")
    if "saccade_df" in st.session_state:
        del st.session_state["saccade_df"]
    if f"dffix{ending_str}" in st.session_state:
        del st.session_state[f"dffix{ending_str}"]
    if f"own_word_measures{ending_str}" in st.session_state:
        del st.session_state[f"own_word_measures{ending_str}"]
    dffix = st.session_state[f"dffix_cleaned{ending_str}"].copy()
    chars_df = pd.DataFrame(st.session_state[f"trial{ending_str}"]["chars_df"])
    dffix = reorder_columns(dffix)
    st.session_state[f"trial{ending_str}"]["y_char_unique"] = list(chars_df.char_y_center.sort_values().unique())
    st.session_state[f"trial{ending_str}"]["chars_df"] = chars_df.to_dict()
    dffix = correct_df(
        dffix,
        st.session_state[f"algo_choice{ending_str}"],
        st.session_state[f"trial{ending_str}"],
        for_multi=False,
        is_outside_of_streamlit=False,
        classic_algos_cfg=CLASSIC_ALGOS_CFGS,
        models_dict=st.session_state["models_dict"],
        fix_cols_to_add=st.session_state[f"fix_cols_to_add{ending_str}"],
    )
    st.session_state[f"dffix{ending_str}"] = dffix


def eyekit_input(ending_str: str):
    st.markdown("Analysis powered by [eyekit](https://jwcarr.github.io/eyekit/)")
    st.markdown(
        "Please adjust parameters below to align fixations with stimulus using the sliders. Eyekit analysis is based on this alignment."
    )
    sliders_on = st.radio(
        "Input method for eyekit parameters",
        ["Sliders", "Direct input"],
        index=0,
        key=f"sliders_on{ending_str}",
        help="This selection determines if the fixation to stimulus alignment parameters can be set via sliders or via directly inputting the desired number.",
    )

    def set_state_to_false():
        st.session_state[f"show_eyekit_analysis{ending_str}"] = False

    if f"font_size_for_eyekit_from_trial{ending_str}" not in st.session_state:
        (
            y_diff,
            x_txt_start,
            y_txt_start,
            font_face,
            font_size,
            line_height,
        ) = add_default_font_and_character_props_to_state(st.session_state[f"trial{ending_str}"])
        font_size = set_font_from_chars_list(st.session_state[f"trial{ending_str}"])
        st.session_state[f"y_diff_for_eyekit_from_trial{ending_str}"] = y_diff
        st.session_state[f"x_txt_start_for_eyekit_from_trial{ending_str}"] = x_txt_start
        st.session_state[f"y_txt_start_for_eyekit_from_trial{ending_str}"] = y_txt_start
        st.session_state[f"font_size_for_eyekit_from_trial{ending_str}"] = font_size
        st.session_state[f"line_height_for_eyekit_from_trial{ending_str}"] = line_height
    with st.form(f"form_eyekit_input{ending_str}"):
        a_c1, a_c2, a_c3, a_c4, a_c5 = st.columns(5)

        a_c1.selectbox(
            label="Select Font",
            options=AVAILABLE_FONTS,
            index=FONT_INDEX,
            key=f"font_face_for_eyekit{ending_str}",
        )
        if sliders_on == "Sliders":
            default_val = float(st.session_state[f"font_size_for_eyekit_from_trial{ending_str}"])
            font_size = a_c2.select_slider(
                "Font Size",
                np.arange(min(5, default_val), max(36, default_val + 0.25), 0.25, dtype=float),
                st.session_state[f"font_size_for_eyekit_from_trial{ending_str}"],
                key=f"font_size_for_eyekit{ending_str}",
                help="This sets the font size for aligning the fixations with the stimulus as reconstructed by eyekit.",
            )
            default_val = int(round(st.session_state[f"x_txt_start_for_eyekit_from_trial{ending_str}"]))
            x_txt_start = a_c3.select_slider(
                "x",
                np.arange(min(300, default_val), max(601, default_val + 1), 1, dtype=int),
                default_val,
                key=f"x_txt_start_for_eyekit{ending_str}",
                help="This sets the x coordinate of first character",
            )
            default_val = int(round(st.session_state[f"y_txt_start_for_eyekit_from_trial{ending_str}"]))
            y_txt_start = a_c4.select_slider(
                "y",
                np.arange(min(100, default_val), max(501, default_val + 1), 1, dtype=int),
                default_val,
                key=f"y_txt_start_for_eyekit{ending_str}",
                help="This sets the y coordinate of first character",
            )
            default_val = int(round(st.session_state[f"line_height_for_eyekit_from_trial{ending_str}"]))
            line_height = a_c5.select_slider(
                "Line height",
                np.arange(min(0, default_val), max(151, default_val + 1), 1, dtype=int),
                default_val,
                key=f"line_height_for_eyekit{ending_str}",
                help="This sets the line height for aligning the fixations with the stimulus as reconstructed by eyekit.",
            )
        else:
            default_val = float(st.session_state[f"font_size_for_eyekit_from_trial{ending_str}"])
            font_size = a_c2.number_input(
                "Font Size",
                None,
                None,
                default_val,
                key=f"font_size_for_eyekit{ending_str}",
                help="This sets the font size for aligning the fixations with the stimulus as reconstructed by eyekit.",
            )
            default_val = int(round(st.session_state[f"x_txt_start_for_eyekit_from_trial{ending_str}"]))
            x_txt_start = a_c3.number_input(
                "x",
                None,
                None,
                default_val,
                key=f"x_txt_start_for_eyekit{ending_str}",
                help="This sets the x coordinate of first character",
            )
            default_val = int(round(st.session_state[f"y_txt_start_for_eyekit_from_trial{ending_str}"]))
            y_txt_start = a_c4.number_input(
                "y",
                None,
                None,
                default_val,
                key=f"y_txt_start_for_eyekit{ending_str}",
                help="This sets the y coordinate of first character",
            )
            default_val = int(round(st.session_state[f"line_height_for_eyekit_from_trial{ending_str}"]))
            line_height = a_c5.number_input(
                "Line height",
                None,
                None,
                default_val,
                key=f"line_height_for_eyekit{ending_str}",
                help="This sets the line height for aligning the fixations with the stimulus as reconstructed by eyekit.",
            )
        st.form_submit_button(
            "Apply selected parameters",
            help="Uses selected parameters for Eyekit Analysis.",
            on_click=set_state_to_false,
        )
    return 0


def cp2st(key: str):
    st.session_state[f"_{key}"] = st.session_state[key]


def get_default_val(k, v):
    if k not in st.session_state:
        return v
    else:
        return st.session_state[k]


def get_def_val_w_underscore(k, v, options):
    is_list = isinstance(v, list)
    if k in st.session_state:
        if is_list:
            is_in_options = all([v1 in options for v1 in st.session_state[k]])
        else:
            is_in_options = st.session_state[k] in options
        if is_in_options:
            return st.session_state[k]
        else:
            return v
    elif f"_{k}" in st.session_state:
        if is_list:
            is_in_options = all([v1 in options for v1 in st.session_state[f"_{k}"]])
        else:
            is_in_options = st.session_state[f"_{k}"] in options
        if is_in_options:
            return st.session_state[f"_{k}"]
        else:
            return v
    else:
        return v


def get_default_index(k, options, v):
    if k in st.session_state and st.session_state[k] in options:
        return options.index(st.session_state[k])
    else:
        return v


def show_cleaning_options(single_file_tab_asc_tab, dffix, key_ending_string):
    form_key = f"cleaning_options_form_{key_ending_string}"
    discard_blinks_fix_single_asc_key = f"discard_blinks_fix_{key_ending_string}"
    discard_far_out_of_text_fix_single_asc_key = f"discard_far_out_of_text_fix_{key_ending_string}"
    outlier_crit_x_threshold_single_asc_key = f"outlier_crit_x_threshold_{key_ending_string}"
    # TODO Finish abstracting all keys
    with single_file_tab_asc_tab.form(key=form_key):
        st.markdown("### Cleaning options")
        st.checkbox(
            "Should fixations that happen just before or after a blink event be discarded?",
            value=get_def_val_w_underscore(f"{discard_blinks_fix_single_asc_key}", True, [True, False]),
            key=discard_blinks_fix_single_asc_key,
            help="This determines if fixations that occur just after or just before a detected blink are discarded and therefore excluded from analysis.",
        )
        st.checkbox(
            "Should fixations that are far outside the text be discarded? (set margins below)",
            value=get_def_val_w_underscore(f"{discard_far_out_of_text_fix_single_asc_key}", True, [True, False]),
            key=discard_far_out_of_text_fix_single_asc_key,
            help="Using the thresholds set below this option determines whether fixations that are further outside the text lines in both horizontal and vertical direction should be discarded.",
        )
        st.number_input(
            "Maximum horizontal distance from first/last character on line (in character widths)",
            min_value=0.0,
            max_value=20.0,
            value=get_def_val_w_underscore(
                f"{outlier_crit_x_threshold_single_asc_key}", 2.0, list(np.arange(0.0, 20.0, 0.25))
            ),
            step=0.25,
            key=outlier_crit_x_threshold_single_asc_key,
            help=r"This option is used to set the maximum horizontal distance a fixation can have from the edges of a line of text before it will be considered to be far outside the text. This distance uses the average character width found in the stimulus text as a unit with the smallest increment being 25 % of this width.",
        )
        outlier_crit_y_threshold_single_asc_key = f"outlier_crit_y_threshold_{key_ending_string}"
        st.number_input(
            "Maximum vertical distance from top/bottom of line (in line heights)",
            min_value=0.0,
            max_value=5.0,
            value=get_def_val_w_underscore(
                f"{outlier_crit_y_threshold_single_asc_key}", 0.5, list(np.arange(0.0, 6.0, 0.05))
            ),
            step=0.05,
            key=outlier_crit_y_threshold_single_asc_key,
            help=r"This option is used to set the maximum vertical distance a fixation can have from the top and bottom edges of a line of text before it will be considered to be far outside the text. This distance uses the unit of average line height and the smallest increment is 5 % of this height.",
        )

        discard_long_fix_single_asc_key = f"discard_long_fix_{key_ending_string}"
        st.checkbox(
            "Should long fixations be discarded? (set threshold below)",
            value=get_def_val_w_underscore(f"{discard_long_fix_single_asc_key}", True, [True, False]),
            key=discard_long_fix_single_asc_key,
            help="If this option is selected, overly long fixations will be discarded. What is considered an overly long fixation is determined by the duration threshold set below.",
        )
        discard_long_fix_threshold_single_asc_key = f"discard_long_fix_threshold_{key_ending_string}"
        st.number_input(
            "Maximum duration allowed for fixations (ms)",
            min_value=20,
            max_value=3000,
            value=get_def_val_w_underscore(
                f"{discard_long_fix_threshold_single_asc_key}", DEFAULT_LONG_FIX_THRESHOLD, list(range(3001))
            ),
            step=5,
            key=discard_long_fix_threshold_single_asc_key,
            help="Fixations longer than this duration will be considered overly long fixations.",
        )

        choice_handle_short_and_close_fix_single_asc_key = f"choice_handle_short_and_close_fix_{key_ending_string}"
        st.radio(
            "How should short fixations be handled?",
            SHORT_FIX_CLEAN_OPTIONS,
            index=get_default_index(f"_{choice_handle_short_and_close_fix_single_asc_key}", SHORT_FIX_CLEAN_OPTIONS, 1),
            key=choice_handle_short_and_close_fix_single_asc_key,
            help="Merge: merges with either previous or next fixation and discards it if it is the last fixation and below the threshold. Merge then discard first tries to merge short fixations and then discards any short fixations that could not be merged. Discard simply discards all short fixations.",
        )
        short_fix_threshold_single_asc_key = f"short_fix_threshold_{key_ending_string}"
        st.number_input(
            "Minimum fixation duration (ms)",
            min_value=1,
            max_value=500,
            value=get_def_val_w_underscore(f"{short_fix_threshold_single_asc_key}", 80, list(range(501))),
            key=short_fix_threshold_single_asc_key,
            help="Fixations shorter than this duration will be considered short fixations.",
        )
        merge_distance_threshold_single_asc_key = f"merge_distance_threshold_{key_ending_string}"
        st.number_input(
            "Maximum distance between fixations when merging (in character widths)",
            min_value=1,
            max_value=20,
            value=get_def_val_w_underscore(
                f"{merge_distance_threshold_single_asc_key}", DEFAULT_MERGE_DISTANCE_THRESHOLD, list(range(25))
            ),
            key=merge_distance_threshold_single_asc_key,
            help="When merging short fixations this is the maximum allowed distance between them.",
        )
        if "chars_list" not in st.session_state[f"trial_{key_ending_string}"]:
            st.warning("Stimulus information not present for trial, cleaning will be limited")
        clean_button_single_asc = st.form_submit_button(label="Apply cleaning")
    if clean_button_single_asc:
        cp2st(discard_blinks_fix_single_asc_key)
        cp2st(discard_far_out_of_text_fix_single_asc_key)
        cp2st(outlier_crit_x_threshold_single_asc_key)
        cp2st(outlier_crit_y_threshold_single_asc_key)
        cp2st(discard_long_fix_single_asc_key)
        cp2st(discard_long_fix_threshold_single_asc_key)
        cp2st(choice_handle_short_and_close_fix_single_asc_key)
        cp2st(short_fix_threshold_single_asc_key)
        cp2st(merge_distance_threshold_single_asc_key)
        if f"dffix_{key_ending_string}" in st.session_state:
            del st.session_state[f"dffix_{key_ending_string}"]
        if f"own_word_measures_{key_ending_string}" in st.session_state:
            del st.session_state[f"own_word_measures_{key_ending_string}"]
        dffix_cleaned, trial = clean_dffix_own(
            st.session_state[f"trial_{key_ending_string}"],
            choice_handle_short_and_close_fix=st.session_state[
                f"choice_handle_short_and_close_fix_{key_ending_string}"
            ],
            discard_far_out_of_text_fix=st.session_state[f"discard_far_out_of_text_fix_{key_ending_string}"],
            x_thres_in_chars=st.session_state[f"outlier_crit_x_threshold_{key_ending_string}"],
            y_thresh_in_heights=st.session_state[f"outlier_crit_y_threshold_{key_ending_string}"],
            short_fix_threshold=st.session_state[f"short_fix_threshold_{key_ending_string}"],
            merge_distance_threshold=st.session_state[f"merge_distance_threshold_{key_ending_string}"],
            discard_long_fix=st.session_state[f"discard_long_fix_{key_ending_string}"],
            discard_long_fix_threshold=st.session_state[f"discard_long_fix_threshold_{key_ending_string}"],
            discard_blinks=st.session_state[discard_blinks_fix_single_asc_key],
            dffix=dffix.copy(),
        )
        if dffix_cleaned.empty:
            st.session_state["logger"].warning("Empty fixation dataframe")
            single_file_tab_asc_tab.warning("Empty fixation dataframe")
        else:
            st.session_state[f"dffix_cleaned_{key_ending_string}"] = reorder_columns(
                dffix_cleaned.dropna(how="all", axis=1).copy()
            )
            st.session_state[f"trial_{key_ending_string}"] = trial


def select_and_show_fix_sacc_feature_plots(
    dffix,
    saccade_df,
    plot_expander_single,
    plot_choice_fix_feature_name,
    plot_choice_sacc_feature_name,
    feature_plot_selection,
    plot_choice_fix_sac_feature_x_axis_name,
):
    with plot_expander_single.form(feature_plot_selection):
        default_val = ["duration"] if "duration" in dffix.columns else [dffix.columns[-1]]
        st.multiselect(
            "Which fixation feature should be visualized?",
            dffix.columns,
            key=plot_choice_fix_feature_name,
            default=get_def_val_w_underscore(f"{plot_choice_fix_feature_name}", default_val, dffix.columns),
            help="From this list of fixation features choose which ones should be visualized below.",
        )
        default_val = ["duration"] if "duration" in saccade_df.columns else [saccade_df.columns[-1]]
        st.multiselect(
            "Which saccade feature should be visualized?",
            saccade_df.columns,
            key=plot_choice_sacc_feature_name,
            default=get_def_val_w_underscore(f"{plot_choice_sacc_feature_name}", default_val, saccade_df.columns),
            help="From this list of saccade features choose which ones should be visualized below.",
        )
        st.radio(
            "X-Axis",
            options=["Index", "Start Time"],
            index=get_default_index(plot_choice_fix_sac_feature_x_axis_name, ["Index", "Start Time"], 0),
            key=plot_choice_fix_sac_feature_x_axis_name,
            help="This selection determines whether to use the index of the fixation/saccade as the x-axis or the timestamp.",
        )
        feature_plot_selection_button_single_asc = st.form_submit_button("📈 Plot selected features!")
    if feature_plot_selection_button_single_asc:
        cp2st(plot_choice_fix_feature_name)
        cp2st(plot_choice_sacc_feature_name)
        cp2st(plot_choice_fix_sac_feature_x_axis_name)
    if plot_choice_fix_feature_name in st.session_state:
        fix_feature_plot_col_single_asc, sacc_feature_plot_col_single_asc = plot_expander_single.columns(2)
        fix_feature_plot_col_single_asc.plotly_chart(
            plot_fix_measure(
                dffix,
                st.session_state[plot_choice_fix_feature_name],
                x_axis_selection=st.session_state[plot_choice_fix_sac_feature_x_axis_name],
                label_start="Fixation",
            ),
            use_container_width=True,
        )
        sacc_feature_plot_col_single_asc.plotly_chart(
            plot_fix_measure(
                saccade_df,
                st.session_state[plot_choice_sacc_feature_name],
                x_axis_selection=st.session_state[plot_choice_fix_sac_feature_x_axis_name],
                label_start="Saccade",
            ),
            use_container_width=True,
        )


def show_cleaning_results(
    single_file_tab_asc_tab, trial, expander_text, dffix_cleaned, dffix_no_clean_name, expander_open, key_str
):
    with single_file_tab_asc_tab.expander(expander_text, expander_open):
        st.markdown("### Cleaning results")
        show_plot = st.checkbox(
            "Show Plot",
            True,
            f"show_plot_check_{key_str}",
            help="If unticked, the plots in this section will be hidden. This can speed up using the interface if the plots are not required.",
        )
        if dffix_no_clean_name in trial:
            if show_plot:
                dffix_no_clean_fig, _, _ = matplotlib_plot_df(
                    dffix_cleaned,
                    trial,
                    None,
                    trial[dffix_no_clean_name],
                    box_annotations=None,
                    fix_to_plot=["Uncorrected Fixations"],
                    stim_info_to_plot=["Characters", "Word boxes"],
                )
                st.markdown("#### Fixations before cleaning")
                st.pyplot(dffix_no_clean_fig)
                dffix_clean_fig, _, _ = matplotlib_plot_df(
                    dffix_cleaned,
                    trial,
                    None,
                    None,
                    box_annotations=None,
                    fix_to_plot=["Uncorrected Fixations"],
                    stim_info_to_plot=["Characters", "Word boxes"],
                    use_duration_arrow_sizes=False,
                )
                st.markdown("#### Fixations after cleaning")
                st.pyplot(dffix_clean_fig)
            st.markdown("#### Fixations comparison before and after cleaning")
            if "Fixation Cleaning Stats" in trial:
                st.json(trial["Fixation Cleaning Stats"])
        st.markdown("#### Cleaned fixations dataframe")

        st.dataframe(dffix_cleaned, height=200)


if __name__ == "__main__":
    main()