File size: 24,232 Bytes
da572bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
"""
Mostly adapted from https://github.com/jwcarr/eyekit/blob/350d055eecaa1581b03db5a847424825ffbb10f6/eyekit/_snap.py
"""
import os
import numpy as np
from sklearn.cluster import KMeans
from icecream import ic
ic.configureOutput(includeContext=True)
os.environ["OMP_NUM_THREADS"] = "1" # Prevents KMeans memory leak on windows
def apply_classic_algo(
dffix,
trial,
algo="slice",
algo_params=dict(x_thresh=192, y_thresh=32, w_thresh=32, n_thresh=90),
):
fixation_array = dffix.loc[:, ["x", "y"]].values
y_diff = trial["y_diff"]
if "y_char_unique" in trial:
midlines = trial["y_char_unique"]
else:
midlines = trial["y_midline"]
if len(midlines) == 1:
corrected_fix_y_vals = np.ones((fixation_array.shape[0])) * midlines[0]
elif fixation_array.shape[0] <= 2:
corrected_fix_y_vals = np.ones((fixation_array.shape[0])) * midlines[0]
else:
if algo == "slice":
corrected_fix_y_vals = slice(fixation_array, midlines, line_height=y_diff, **algo_params)
elif algo == "warp":
word_center_list = [(word["word_x_center"], word["word_y_center"]) for word in trial["words_list"]]
corrected_fix_y_vals = warp(fixation_array, word_center_list)
elif algo == "chain":
corrected_fix_y_vals = chain(fixation_array, midlines, **algo_params)
elif algo == "cluster":
corrected_fix_y_vals = cluster(fixation_array, midlines)
elif algo == "merge":
corrected_fix_y_vals = merge(fixation_array, midlines, **algo_params)
elif algo == "regress":
corrected_fix_y_vals = regress(fixation_array, midlines, **algo_params)
elif algo == "segment":
corrected_fix_y_vals = segment(fixation_array, midlines, **algo_params)
elif algo == "split":
corrected_fix_y_vals = split(fixation_array, midlines, **algo_params)
elif algo == "stretch":
corrected_fix_y_vals = stretch(fixation_array, midlines, **algo_params)
elif algo == "attach":
corrected_fix_y_vals = attach(fixation_array, midlines)
elif algo == "compare":
word_center_list = [(word["word_x_center"], word["word_y_center"]) for word in trial["words_list"]]
n_nearest_lines = min(algo_params["n_nearest_lines"], len(midlines) - 1)
algo_params["n_nearest_lines"] = n_nearest_lines
corrected_fix_y_vals = compare(fixation_array, np.array(word_center_list), **algo_params)
else:
raise NotImplementedError(f"{algo} not implemented")
corrected_fix_y_vals = np.round(corrected_fix_y_vals, decimals=2)
corrected_line_nums = [trial["y_char_unique"].index(y) for y in corrected_fix_y_vals]
dffix[f"y_{algo}"] = corrected_fix_y_vals
dffix[f"line_num_{algo}"] = corrected_line_nums
dffix = dffix.copy()
return dffix
def slice(fixation_XY, midlines, line_height: float, x_thresh=192, y_thresh=32, w_thresh=32, n_thresh=90):
"""
Form a set of runs and then reduce the set to *m* by repeatedly merging
those that appear to be on the same line. Merged sequences are then
assigned to text lines in positional order. Default params:
`x_thresh=192`, `y_thresh=32`, `w_thresh=32`, `n_thresh=90`. Requires
NumPy. Original method by [Glandorf & Schroeder (2021)](https://doi.org/10.1016/j.procs.2021.09.069).
"""
fixation_XY = np.array(fixation_XY, dtype=float)
line_Y = np.array(midlines, dtype=float)
proto_lines, phantom_proto_lines = {}, {}
# 1. Segment runs
dist_X = abs(np.diff(fixation_XY[:, 0]))
dist_Y = abs(np.diff(fixation_XY[:, 1]))
end_run_indices = list(np.where(np.logical_or(dist_X > x_thresh, dist_Y > y_thresh))[0] + 1)
run_starts = [0] + end_run_indices
run_ends = end_run_indices + [len(fixation_XY)]
runs = [list(range(start, end)) for start, end in zip(run_starts, run_ends)]
# 2. Determine starting run
longest_run_i = np.argmax([fixation_XY[run[-1], 0] - fixation_XY[run[0], 0] for run in runs])
proto_lines[0] = runs.pop(longest_run_i)
# 3. Group runs into proto lines
while runs:
merger_on_this_iteration = False
for proto_line_i, direction in [(min(proto_lines), -1), (max(proto_lines), 1)]:
# Create new proto line above or below (depending on direction)
proto_lines[proto_line_i + direction] = []
# Get current proto line XY coordinates (if proto line is empty, get phanton coordinates)
if proto_lines[proto_line_i]:
proto_line_XY = fixation_XY[proto_lines[proto_line_i]]
else:
proto_line_XY = phantom_proto_lines[proto_line_i]
# Compute differences between current proto line and all runs
run_differences = np.zeros(len(runs))
for run_i, run in enumerate(runs):
y_diffs = [y - proto_line_XY[np.argmin(abs(proto_line_XY[:, 0] - x)), 1] for x, y in fixation_XY[run]]
run_differences[run_i] = np.mean(y_diffs)
# Find runs that can be merged into this proto line
merge_into_current = list(np.where(abs(run_differences) < w_thresh)[0])
# Find runs that can be merged into the adjacent proto line
merge_into_adjacent = list(
np.where(
np.logical_and(
run_differences * direction >= w_thresh,
run_differences * direction < n_thresh,
)
)[0]
)
# Perform mergers
for index in merge_into_current:
proto_lines[proto_line_i].extend(runs[index])
for index in merge_into_adjacent:
proto_lines[proto_line_i + direction].extend(runs[index])
# If no, mergers to the adjacent, create phantom line for the adjacent
if not merge_into_adjacent:
average_x, average_y = np.mean(proto_line_XY, axis=0)
adjacent_y = average_y + line_height * direction
phantom_proto_lines[proto_line_i + direction] = np.array([[average_x, adjacent_y]])
# Remove all runs that were merged on this iteration
for index in sorted(merge_into_current + merge_into_adjacent, reverse=True):
del runs[index]
merger_on_this_iteration = True
# If no mergers were made, break the while loop
if not merger_on_this_iteration:
break
# 4. Assign any leftover runs to the closest proto lines
for run in runs:
best_pl_distance = np.inf
best_pl_assignemnt = None
for proto_line_i in proto_lines:
if proto_lines[proto_line_i]:
proto_line_XY = fixation_XY[proto_lines[proto_line_i]]
else:
proto_line_XY = phantom_proto_lines[proto_line_i]
y_diffs = [y - proto_line_XY[np.argmin(abs(proto_line_XY[:, 0] - x)), 1] for x, y in fixation_XY[run]]
pl_distance = abs(np.mean(y_diffs))
if pl_distance < best_pl_distance:
best_pl_distance = pl_distance
best_pl_assignemnt = proto_line_i
proto_lines[best_pl_assignemnt].extend(run)
# 5. Prune proto lines
while len(proto_lines) > len(line_Y):
top, bot = min(proto_lines), max(proto_lines)
if len(proto_lines[top]) < len(proto_lines[bot]):
proto_lines[top + 1].extend(proto_lines[top])
del proto_lines[top]
else:
proto_lines[bot - 1].extend(proto_lines[bot])
del proto_lines[bot]
# 6. Map proto lines to text lines
for line_i, proto_line_i in enumerate(sorted(proto_lines)):
fixation_XY[proto_lines[proto_line_i], 1] = line_Y[line_i]
return fixation_XY[:, 1]
def attach(fixation_XY, line_Y):
n = len(fixation_XY)
for fixation_i in range(n):
line_i = np.argmin(abs(line_Y - fixation_XY[fixation_i, 1]))
fixation_XY[fixation_i, 1] = line_Y[line_i]
return fixation_XY[:, 1]
def chain(fixation_XY, midlines, x_thresh=192, y_thresh=32):
"""
Chain consecutive fixations that are sufficiently close to each other, and
then assign chains to their closest text lines. Default params:
`x_thresh=192`, `y_thresh=32`. Requires NumPy. Original method
implemented in [popEye](https://github.com/sascha2schroeder/popEye/).
"""
try:
import numpy as np
except ModuleNotFoundError as e:
e.msg = "The chain method requires NumPy."
raise
fixation_XY = np.array(fixation_XY)
line_Y = np.array(midlines)
dist_X = abs(np.diff(fixation_XY[:, 0]))
dist_Y = abs(np.diff(fixation_XY[:, 1]))
end_chain_indices = list(np.where(np.logical_or(dist_X > x_thresh, dist_Y > y_thresh))[0] + 1)
end_chain_indices.append(len(fixation_XY))
start_of_chain = 0
for end_of_chain in end_chain_indices:
mean_y = np.mean(fixation_XY[start_of_chain:end_of_chain, 1])
line_i = np.argmin(abs(line_Y - mean_y))
fixation_XY[start_of_chain:end_of_chain, 1] = line_Y[line_i]
start_of_chain = end_of_chain
return fixation_XY[:, 1]
def cluster(fixation_XY, line_Y):
m = len(line_Y)
fixation_Y = fixation_XY[:, 1].reshape(-1, 1)
if fixation_Y.shape[0] < m:
ic(f"CLUSTER failed because of low number of fixations: {fixation_XY.shape}")
ic("Assigned all fixation to first line")
return np.ones_like(fixation_XY[:, 1]) * line_Y[0]
clusters = KMeans(m, n_init=100, max_iter=300).fit_predict(fixation_Y)
centers = [fixation_Y[clusters == i].mean() for i in range(m)]
ordered_cluster_indices = np.argsort(centers)
for fixation_i, cluster_i in enumerate(clusters):
line_i = np.where(ordered_cluster_indices == cluster_i)[0][0]
fixation_XY[fixation_i, 1] = line_Y[line_i]
return fixation_XY[:, 1]
def compare(fixation_XY, word_XY, x_thresh=512, n_nearest_lines=3):
# COMPARE
#
# Lima Sanches, C., Kise, K., & Augereau, O. (2015). Eye gaze and text
# line matching for reading analysis. In Adjunct proceedings of the
# 2015 ACM International Joint Conference on Pervasive and
# Ubiquitous Computing and proceedings of the 2015 ACM International
# Symposium on Wearable Computers (pp. 1227–1233). Association for
# Computing Machinery.
#
# https://doi.org/10.1145/2800835.2807936
line_Y = np.unique(word_XY[:, 1])
n = len(fixation_XY)
diff_X = np.diff(fixation_XY[:, 0])
end_line_indices = list(np.where(diff_X < -x_thresh)[0] + 1)
end_line_indices.append(n)
start_of_line = 0
for end_of_line in end_line_indices:
gaze_line = fixation_XY[start_of_line:end_of_line]
mean_y = np.mean(gaze_line[:, 1])
lines_ordered_by_proximity = np.argsort(abs(line_Y - mean_y))
nearest_line_I = lines_ordered_by_proximity[:n_nearest_lines]
line_costs = np.zeros(n_nearest_lines)
for candidate_i in range(n_nearest_lines):
candidate_line_i = nearest_line_I[candidate_i]
text_line = word_XY[word_XY[:, 1] == line_Y[candidate_line_i]]
dtw_cost, dtw_path = dynamic_time_warping(gaze_line[:, 0:1], text_line[:, 0:1])
line_costs[candidate_i] = dtw_cost
line_i = nearest_line_I[np.argmin(line_costs)]
fixation_XY[start_of_line:end_of_line, 1] = line_Y[line_i]
start_of_line = end_of_line
return fixation_XY[:, 1]
def merge(fixation_XY, midlines, text_right_to_left=False, y_thresh=32, gradient_thresh=0.1, error_thresh=20):
"""
Form a set of progressive sequences and then reduce the set to *m* by
repeatedly merging those that appear to be on the same line. Merged
sequences are then assigned to text lines in positional order. Default
params: `y_thresh=32`, `gradient_thresh=0.1`, `error_thresh=20`. Requires
NumPy. Original method by [Špakov et al. (2019)](https://doi.org/10.3758/s13428-018-1120-x).
"""
try:
import numpy as np
except ModuleNotFoundError as e:
e.msg = "The merge method requires NumPy."
raise
fixation_XY = np.array(fixation_XY)
line_Y = np.array(midlines)
diff_X = np.diff(fixation_XY[:, 0])
dist_Y = abs(np.diff(fixation_XY[:, 1]))
if text_right_to_left:
sequence_boundaries = list(np.where(np.logical_or(diff_X > 0, dist_Y > y_thresh))[0] + 1)
else:
sequence_boundaries = list(np.where(np.logical_or(diff_X < 0, dist_Y > y_thresh))[0] + 1)
sequence_starts = [0] + sequence_boundaries
sequence_ends = sequence_boundaries + [len(fixation_XY)]
sequences = [list(range(start, end)) for start, end in zip(sequence_starts, sequence_ends)]
for min_i, min_j, remove_constraints in [
(3, 3, False), # Phase 1
(1, 3, False), # Phase 2
(1, 1, False), # Phase 3
(1, 1, True), # Phase 4
]:
while len(sequences) > len(line_Y):
best_merger = None
best_error = np.inf
for i in range(len(sequences) - 1):
if len(sequences[i]) < min_i:
continue # first sequence too short, skip to next i
for j in range(i + 1, len(sequences)):
if len(sequences[j]) < min_j:
continue # second sequence too short, skip to next j
candidate_XY = fixation_XY[sequences[i] + sequences[j]]
gradient, intercept = np.polyfit(candidate_XY[:, 0], candidate_XY[:, 1], 1)
residuals = candidate_XY[:, 1] - (gradient * candidate_XY[:, 0] + intercept)
error = np.sqrt(sum(residuals**2) / len(candidate_XY))
if remove_constraints or (abs(gradient) < gradient_thresh and error < error_thresh):
if error < best_error:
best_merger = (i, j)
best_error = error
if best_merger is None:
break # no possible mergers, break while and move to next phase
merge_i, merge_j = best_merger
merged_sequence = sequences[merge_i] + sequences[merge_j]
sequences.append(merged_sequence)
del sequences[merge_j], sequences[merge_i]
mean_Y = [fixation_XY[sequence, 1].mean() for sequence in sequences]
ordered_sequence_indices = np.argsort(mean_Y)
for line_i, sequence_i in enumerate(ordered_sequence_indices):
fixation_XY[sequences[sequence_i], 1] = line_Y[line_i]
return fixation_XY[:, 1]
def regress(
fixation_XY,
midlines,
slope_bounds=(-0.1, 0.1),
offset_bounds=(-50, 50),
std_bounds=(1, 20),
):
"""
Find *m* regression lines that best fit the fixations and group fixations
according to best fit regression lines, and then assign groups to text
lines in positional order. Default params: `slope_bounds=(-0.1, 0.1)`,
`offset_bounds=(-50, 50)`, `std_bounds=(1, 20)`. Requires SciPy.
Original method by [Cohen (2013)](https://doi.org/10.3758/s13428-012-0280-3).
"""
try:
import numpy as np
from scipy.optimize import minimize
from scipy.stats import norm
except ModuleNotFoundError as e:
e.msg = "The regress method requires SciPy."
raise
fixation_XY = np.array(fixation_XY)
line_Y = np.array(midlines)
density = np.zeros((len(fixation_XY), len(line_Y)))
def fit_lines(params):
k = slope_bounds[0] + (slope_bounds[1] - slope_bounds[0]) * norm.cdf(params[0])
o = offset_bounds[0] + (offset_bounds[1] - offset_bounds[0]) * norm.cdf(params[1])
s = std_bounds[0] + (std_bounds[1] - std_bounds[0]) * norm.cdf(params[2])
predicted_Y_from_slope = fixation_XY[:, 0] * k
line_Y_plus_offset = line_Y + o
for line_i in range(len(line_Y)):
fit_Y = predicted_Y_from_slope + line_Y_plus_offset[line_i]
density[:, line_i] = norm.logpdf(fixation_XY[:, 1], fit_Y, s)
return -sum(density.max(axis=1))
best_fit = minimize(fit_lines, [0, 0, 0], method="powell")
fit_lines(best_fit.x)
return line_Y[density.argmax(axis=1)]
def segment(fixation_XY, midlines, text_right_to_left=False):
"""
Segment fixation sequence into *m* subsequences based on *m*–1 most-likely
return sweeps, and then assign subsequences to text lines in chronological
order. Requires NumPy. Original method by
[Abdulin & Komogortsev (2015)](https://doi.org/10.1109/BTAS.2015.7358786).
"""
try:
import numpy as np
except ModuleNotFoundError as e:
e.msg = "The segment method requires NumPy."
raise
fixation_XY = np.array(fixation_XY)
line_Y = np.array(midlines)
diff_X = np.diff(fixation_XY[:, 0])
saccades_ordered_by_length = np.argsort(diff_X)
if text_right_to_left:
line_change_indices = saccades_ordered_by_length[-(len(line_Y) - 1) :]
else:
line_change_indices = saccades_ordered_by_length[: len(line_Y) - 1]
current_line_i = 0
for fixation_i in range(len(fixation_XY)):
fixation_XY[fixation_i, 1] = line_Y[current_line_i]
if fixation_i in line_change_indices:
current_line_i += 1
return fixation_XY[:, 1]
def split(fixation_XY, midlines, text_right_to_left=False):
"""
Split fixation sequence into subsequences based on best candidate return
sweeps, and then assign subsequences to closest text lines. Requires
SciPy. Original method by [Carr et al. (2022)](https://doi.org/10.3758/s13428-021-01554-0).
"""
try:
import numpy as np
from scipy.cluster.vq import kmeans2
except ModuleNotFoundError as e:
e.msg = "The split method requires SciPy."
raise
fixation_XY = np.array(fixation_XY)
line_Y = np.array(midlines)
diff_X = np.array(np.diff(fixation_XY[:, 0]), dtype=float).reshape(-1, 1)
centers, clusters = kmeans2(diff_X, 2, iter=100, minit="++", missing="raise")
if text_right_to_left:
sweep_marker = np.argmax(centers)
else:
sweep_marker = np.argmin(centers)
end_line_indices = list(np.where(clusters == sweep_marker)[0] + 1)
end_line_indices.append(len(fixation_XY))
start_of_line = 0
for end_of_line in end_line_indices:
mean_y = np.mean(fixation_XY[start_of_line:end_of_line, 1])
line_i = np.argmin(abs(line_Y - mean_y))
fixation_XY[start_of_line:end_of_line] = line_Y[line_i]
start_of_line = end_of_line
return fixation_XY[:, 1]
def stretch(fixation_XY, midlines, stretch_bounds=(0.9, 1.1), offset_bounds=(-50, 50)):
"""
Find a stretch factor and offset that results in a good alignment between
the fixations and lines of text, and then assign the transformed fixations
to the closest text lines. Default params: `stretch_bounds=(0.9, 1.1)`,
`offset_bounds=(-50, 50)`. Requires SciPy.
Original method by [Lohmeier (2015)](http://www.monochromata.de/master_thesis/ma1.3.pdf).
"""
try:
import numpy as np
from scipy.optimize import minimize
except ModuleNotFoundError as e:
e.msg = "The stretch method requires SciPy."
raise
fixation_Y = np.array(fixation_XY)[:, 1]
line_Y = np.array(midlines)
n = len(fixation_Y)
corrected_Y = np.zeros(n)
def fit_lines(params):
candidate_Y = fixation_Y * params[0] + params[1]
for fixation_i in range(n):
line_i = np.argmin(abs(line_Y - candidate_Y[fixation_i]))
corrected_Y[fixation_i] = line_Y[line_i]
return sum(abs(candidate_Y - corrected_Y))
best_fit = minimize(fit_lines, [1, 0], method="powell", bounds=[stretch_bounds, offset_bounds])
fit_lines(best_fit.x)
return corrected_Y
def warp(fixation_XY, word_center_list):
"""
Map fixations to word centers using [Dynamic Time
Warping](https://en.wikipedia.org/wiki/Dynamic_time_warping). This finds a
monotonically increasing mapping between fixations and words with the
shortest overall distance, effectively resulting in *m* subsequences.
Fixations are then assigned to the lines that their mapped words belong
to, effectively assigning subsequences to text lines in chronological
order. Requires NumPy.
Original method by [Carr et al. (2022)](https://doi.org/10.3758/s13428-021-01554-0).
"""
try:
import numpy as np
except ModuleNotFoundError as e:
e.msg = "The warp method requires NumPy."
raise
fixation_XY = np.array(fixation_XY)
word_XY = np.array([word_center for word_center in word_center_list])
n1 = len(fixation_XY)
n2 = len(word_XY)
cost = np.zeros((n1 + 1, n2 + 1))
cost[0, :] = np.inf
cost[:, 0] = np.inf
cost[0, 0] = 0
for fixation_i in range(n1):
for word_i in range(n2):
distance = np.sqrt(sum((fixation_XY[fixation_i] - word_XY[word_i]) ** 2))
cost[fixation_i + 1, word_i + 1] = distance + min(
cost[fixation_i, word_i + 1],
cost[fixation_i + 1, word_i],
cost[fixation_i, word_i],
)
cost = cost[1:, 1:]
warping_path = [[] for _ in range(n1)]
while fixation_i > 0 or word_i > 0:
warping_path[fixation_i].append(word_i)
possible_moves = [np.inf, np.inf, np.inf]
if fixation_i > 0 and word_i > 0:
possible_moves[0] = cost[fixation_i - 1, word_i - 1]
if fixation_i > 0:
possible_moves[1] = cost[fixation_i - 1, word_i]
if word_i > 0:
possible_moves[2] = cost[fixation_i, word_i - 1]
best_move = np.argmin(possible_moves)
if best_move == 0:
fixation_i -= 1
word_i -= 1
elif best_move == 1:
fixation_i -= 1
else:
word_i -= 1
warping_path[0].append(0)
for fixation_i, words_mapped_to_fixation_i in enumerate(warping_path):
candidate_Y = list(word_XY[words_mapped_to_fixation_i, 1])
fixation_XY[fixation_i, 1] = max(set(candidate_Y), key=candidate_Y.count)
return fixation_XY[:, 1]
def dynamic_time_warping(sequence1, sequence2):
n1 = len(sequence1)
n2 = len(sequence2)
dtw_cost = np.zeros((n1 + 1, n2 + 1))
dtw_cost[0, :] = np.inf
dtw_cost[:, 0] = np.inf
dtw_cost[0, 0] = 0
for i in range(n1):
for j in range(n2):
this_cost = np.sqrt(sum((sequence1[i] - sequence2[j]) ** 2))
dtw_cost[i + 1, j + 1] = this_cost + min(dtw_cost[i, j + 1], dtw_cost[i + 1, j], dtw_cost[i, j])
dtw_cost = dtw_cost[1:, 1:]
dtw_path = [[] for _ in range(n1)]
while i > 0 or j > 0:
dtw_path[i].append(j)
possible_moves = [np.inf, np.inf, np.inf]
if i > 0 and j > 0:
possible_moves[0] = dtw_cost[i - 1, j - 1]
if i > 0:
possible_moves[1] = dtw_cost[i - 1, j]
if j > 0:
possible_moves[2] = dtw_cost[i, j - 1]
best_move = np.argmin(possible_moves)
if best_move == 0:
i -= 1
j -= 1
elif best_move == 1:
i -= 1
else:
j -= 1
dtw_path[0].append(0)
return dtw_cost[-1, -1], dtw_path
def wisdom_of_the_crowd(assignments):
"""
For each fixation, choose the y-value with the most votes across multiple
algorithms. In the event of a tie, the left-most algorithm is given
priority.
"""
assignments = np.column_stack(assignments)
correction = []
for row in assignments:
candidates = list(row)
candidate_counts = {y: candidates.count(y) for y in set(candidates)}
best_count = max(candidate_counts.values())
best_candidates = [y for y, c in candidate_counts.items() if c == best_count]
if len(best_candidates) == 1:
correction.append(best_candidates[0])
else:
for y in row:
if y in best_candidates:
correction.append(y)
break
return correction
|