File size: 24,232 Bytes
da572bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
"""
Mostly adapted from https://github.com/jwcarr/eyekit/blob/350d055eecaa1581b03db5a847424825ffbb10f6/eyekit/_snap.py
"""

import os
import numpy as np
from sklearn.cluster import KMeans
from icecream import ic

ic.configureOutput(includeContext=True)

os.environ["OMP_NUM_THREADS"] = "1"  # Prevents KMeans memory leak on windows


def apply_classic_algo(
    dffix,
    trial,
    algo="slice",
    algo_params=dict(x_thresh=192, y_thresh=32, w_thresh=32, n_thresh=90),
):
    fixation_array = dffix.loc[:, ["x", "y"]].values
    y_diff = trial["y_diff"]
    if "y_char_unique" in trial:
        midlines = trial["y_char_unique"]
    else:
        midlines = trial["y_midline"]
    if len(midlines) == 1:
        corrected_fix_y_vals = np.ones((fixation_array.shape[0])) * midlines[0]
    elif fixation_array.shape[0] <= 2:
        corrected_fix_y_vals = np.ones((fixation_array.shape[0])) * midlines[0]

    else:
        if algo == "slice":
            corrected_fix_y_vals = slice(fixation_array, midlines, line_height=y_diff, **algo_params)
        elif algo == "warp":
            word_center_list = [(word["word_x_center"], word["word_y_center"]) for word in trial["words_list"]]
            corrected_fix_y_vals = warp(fixation_array, word_center_list)
        elif algo == "chain":
            corrected_fix_y_vals = chain(fixation_array, midlines, **algo_params)
        elif algo == "cluster":
            corrected_fix_y_vals = cluster(fixation_array, midlines)
        elif algo == "merge":
            corrected_fix_y_vals = merge(fixation_array, midlines, **algo_params)
        elif algo == "regress":
            corrected_fix_y_vals = regress(fixation_array, midlines, **algo_params)
        elif algo == "segment":
            corrected_fix_y_vals = segment(fixation_array, midlines, **algo_params)
        elif algo == "split":
            corrected_fix_y_vals = split(fixation_array, midlines, **algo_params)
        elif algo == "stretch":
            corrected_fix_y_vals = stretch(fixation_array, midlines, **algo_params)
        elif algo == "attach":
            corrected_fix_y_vals = attach(fixation_array, midlines)
        elif algo == "compare":
            word_center_list = [(word["word_x_center"], word["word_y_center"]) for word in trial["words_list"]]
            n_nearest_lines = min(algo_params["n_nearest_lines"], len(midlines) - 1)
            algo_params["n_nearest_lines"] = n_nearest_lines
            corrected_fix_y_vals = compare(fixation_array, np.array(word_center_list), **algo_params)
        else:
            raise NotImplementedError(f"{algo} not implemented")
    corrected_fix_y_vals = np.round(corrected_fix_y_vals, decimals=2)
    corrected_line_nums = [trial["y_char_unique"].index(y) for y in corrected_fix_y_vals]
    dffix[f"y_{algo}"] = corrected_fix_y_vals
    dffix[f"line_num_{algo}"] = corrected_line_nums
    dffix = dffix.copy()
    return dffix


def slice(fixation_XY, midlines, line_height: float, x_thresh=192, y_thresh=32, w_thresh=32, n_thresh=90):
    """
    Form a set of runs and then reduce the set to *m* by repeatedly merging
    those that appear to be on the same line. Merged sequences are then
    assigned to text lines in positional order. Default params:
    `x_thresh=192`, `y_thresh=32`, `w_thresh=32`, `n_thresh=90`. Requires
    NumPy. Original method by [Glandorf & Schroeder (2021)](https://doi.org/10.1016/j.procs.2021.09.069).
    """
    fixation_XY = np.array(fixation_XY, dtype=float)
    line_Y = np.array(midlines, dtype=float)
    proto_lines, phantom_proto_lines = {}, {}
    # 1. Segment runs
    dist_X = abs(np.diff(fixation_XY[:, 0]))
    dist_Y = abs(np.diff(fixation_XY[:, 1]))
    end_run_indices = list(np.where(np.logical_or(dist_X > x_thresh, dist_Y > y_thresh))[0] + 1)
    run_starts = [0] + end_run_indices
    run_ends = end_run_indices + [len(fixation_XY)]
    runs = [list(range(start, end)) for start, end in zip(run_starts, run_ends)]
    # 2. Determine starting run
    longest_run_i = np.argmax([fixation_XY[run[-1], 0] - fixation_XY[run[0], 0] for run in runs])
    proto_lines[0] = runs.pop(longest_run_i)
    # 3. Group runs into proto lines
    while runs:
        merger_on_this_iteration = False
        for proto_line_i, direction in [(min(proto_lines), -1), (max(proto_lines), 1)]:
            # Create new proto line above or below (depending on direction)
            proto_lines[proto_line_i + direction] = []
            # Get current proto line XY coordinates (if proto line is empty, get phanton coordinates)
            if proto_lines[proto_line_i]:
                proto_line_XY = fixation_XY[proto_lines[proto_line_i]]
            else:
                proto_line_XY = phantom_proto_lines[proto_line_i]
            # Compute differences between current proto line and all runs
            run_differences = np.zeros(len(runs))
            for run_i, run in enumerate(runs):
                y_diffs = [y - proto_line_XY[np.argmin(abs(proto_line_XY[:, 0] - x)), 1] for x, y in fixation_XY[run]]
                run_differences[run_i] = np.mean(y_diffs)
            # Find runs that can be merged into this proto line
            merge_into_current = list(np.where(abs(run_differences) < w_thresh)[0])
            # Find runs that can be merged into the adjacent proto line
            merge_into_adjacent = list(
                np.where(
                    np.logical_and(
                        run_differences * direction >= w_thresh,
                        run_differences * direction < n_thresh,
                    )
                )[0]
            )
            # Perform mergers
            for index in merge_into_current:
                proto_lines[proto_line_i].extend(runs[index])
            for index in merge_into_adjacent:
                proto_lines[proto_line_i + direction].extend(runs[index])
            # If no, mergers to the adjacent, create phantom line for the adjacent
            if not merge_into_adjacent:
                average_x, average_y = np.mean(proto_line_XY, axis=0)
                adjacent_y = average_y + line_height * direction
                phantom_proto_lines[proto_line_i + direction] = np.array([[average_x, adjacent_y]])
            # Remove all runs that were merged on this iteration
            for index in sorted(merge_into_current + merge_into_adjacent, reverse=True):
                del runs[index]
                merger_on_this_iteration = True
        # If no mergers were made, break the while loop
        if not merger_on_this_iteration:
            break
    # 4. Assign any leftover runs to the closest proto lines
    for run in runs:
        best_pl_distance = np.inf
        best_pl_assignemnt = None
        for proto_line_i in proto_lines:
            if proto_lines[proto_line_i]:
                proto_line_XY = fixation_XY[proto_lines[proto_line_i]]
            else:
                proto_line_XY = phantom_proto_lines[proto_line_i]
            y_diffs = [y - proto_line_XY[np.argmin(abs(proto_line_XY[:, 0] - x)), 1] for x, y in fixation_XY[run]]
            pl_distance = abs(np.mean(y_diffs))
            if pl_distance < best_pl_distance:
                best_pl_distance = pl_distance
                best_pl_assignemnt = proto_line_i
        proto_lines[best_pl_assignemnt].extend(run)
    # 5. Prune proto lines
    while len(proto_lines) > len(line_Y):
        top, bot = min(proto_lines), max(proto_lines)
        if len(proto_lines[top]) < len(proto_lines[bot]):
            proto_lines[top + 1].extend(proto_lines[top])
            del proto_lines[top]
        else:
            proto_lines[bot - 1].extend(proto_lines[bot])
            del proto_lines[bot]
    # 6. Map proto lines to text lines
    for line_i, proto_line_i in enumerate(sorted(proto_lines)):
        fixation_XY[proto_lines[proto_line_i], 1] = line_Y[line_i]
    return fixation_XY[:, 1]


def attach(fixation_XY, line_Y):
    n = len(fixation_XY)
    for fixation_i in range(n):
        line_i = np.argmin(abs(line_Y - fixation_XY[fixation_i, 1]))
        fixation_XY[fixation_i, 1] = line_Y[line_i]
    return fixation_XY[:, 1]


def chain(fixation_XY, midlines, x_thresh=192, y_thresh=32):
    """
    Chain consecutive fixations that are sufficiently close to each other, and
    then assign chains to their closest text lines. Default params:
    `x_thresh=192`, `y_thresh=32`. Requires NumPy. Original method
    implemented in [popEye](https://github.com/sascha2schroeder/popEye/).
    """
    try:
        import numpy as np
    except ModuleNotFoundError as e:
        e.msg = "The chain method requires NumPy."
        raise
    fixation_XY = np.array(fixation_XY)
    line_Y = np.array(midlines)
    dist_X = abs(np.diff(fixation_XY[:, 0]))
    dist_Y = abs(np.diff(fixation_XY[:, 1]))
    end_chain_indices = list(np.where(np.logical_or(dist_X > x_thresh, dist_Y > y_thresh))[0] + 1)
    end_chain_indices.append(len(fixation_XY))
    start_of_chain = 0
    for end_of_chain in end_chain_indices:
        mean_y = np.mean(fixation_XY[start_of_chain:end_of_chain, 1])
        line_i = np.argmin(abs(line_Y - mean_y))
        fixation_XY[start_of_chain:end_of_chain, 1] = line_Y[line_i]
        start_of_chain = end_of_chain
    return fixation_XY[:, 1]


def cluster(fixation_XY, line_Y):
    m = len(line_Y)
    fixation_Y = fixation_XY[:, 1].reshape(-1, 1)
    if fixation_Y.shape[0] < m:
        ic(f"CLUSTER failed because of low number of fixations: {fixation_XY.shape}")
        ic("Assigned all fixation to first line")
        return np.ones_like(fixation_XY[:, 1]) * line_Y[0]
    clusters = KMeans(m, n_init=100, max_iter=300).fit_predict(fixation_Y)
    centers = [fixation_Y[clusters == i].mean() for i in range(m)]
    ordered_cluster_indices = np.argsort(centers)
    for fixation_i, cluster_i in enumerate(clusters):
        line_i = np.where(ordered_cluster_indices == cluster_i)[0][0]
        fixation_XY[fixation_i, 1] = line_Y[line_i]
    return fixation_XY[:, 1]


def compare(fixation_XY, word_XY, x_thresh=512, n_nearest_lines=3):
    # COMPARE
    #
    # Lima Sanches, C., Kise, K., & Augereau, O. (2015). Eye gaze and text
    #   line matching for reading analysis. In Adjunct proceedings of the
    #   2015 ACM International Joint Conference on Pervasive and
    #   Ubiquitous Computing and proceedings of the 2015 ACM International
    #   Symposium on Wearable Computers (pp. 1227–1233). Association for
    #   Computing Machinery.
    #
    # https://doi.org/10.1145/2800835.2807936
    line_Y = np.unique(word_XY[:, 1])
    n = len(fixation_XY)
    diff_X = np.diff(fixation_XY[:, 0])
    end_line_indices = list(np.where(diff_X < -x_thresh)[0] + 1)
    end_line_indices.append(n)
    start_of_line = 0
    for end_of_line in end_line_indices:
        gaze_line = fixation_XY[start_of_line:end_of_line]
        mean_y = np.mean(gaze_line[:, 1])
        lines_ordered_by_proximity = np.argsort(abs(line_Y - mean_y))
        nearest_line_I = lines_ordered_by_proximity[:n_nearest_lines]
        line_costs = np.zeros(n_nearest_lines)
        for candidate_i in range(n_nearest_lines):
            candidate_line_i = nearest_line_I[candidate_i]
            text_line = word_XY[word_XY[:, 1] == line_Y[candidate_line_i]]
            dtw_cost, dtw_path = dynamic_time_warping(gaze_line[:, 0:1], text_line[:, 0:1])
            line_costs[candidate_i] = dtw_cost
        line_i = nearest_line_I[np.argmin(line_costs)]
        fixation_XY[start_of_line:end_of_line, 1] = line_Y[line_i]
        start_of_line = end_of_line
    return fixation_XY[:, 1]


def merge(fixation_XY, midlines, text_right_to_left=False, y_thresh=32, gradient_thresh=0.1, error_thresh=20):
    """
    Form a set of progressive sequences and then reduce the set to *m* by
    repeatedly merging those that appear to be on the same line. Merged
    sequences are then assigned to text lines in positional order. Default
    params: `y_thresh=32`, `gradient_thresh=0.1`, `error_thresh=20`. Requires
    NumPy. Original method by [Špakov et al. (2019)](https://doi.org/10.3758/s13428-018-1120-x).
    """
    try:
        import numpy as np
    except ModuleNotFoundError as e:
        e.msg = "The merge method requires NumPy."
        raise
    fixation_XY = np.array(fixation_XY)
    line_Y = np.array(midlines)
    diff_X = np.diff(fixation_XY[:, 0])
    dist_Y = abs(np.diff(fixation_XY[:, 1]))
    if text_right_to_left:
        sequence_boundaries = list(np.where(np.logical_or(diff_X > 0, dist_Y > y_thresh))[0] + 1)
    else:
        sequence_boundaries = list(np.where(np.logical_or(diff_X < 0, dist_Y > y_thresh))[0] + 1)
    sequence_starts = [0] + sequence_boundaries
    sequence_ends = sequence_boundaries + [len(fixation_XY)]
    sequences = [list(range(start, end)) for start, end in zip(sequence_starts, sequence_ends)]
    for min_i, min_j, remove_constraints in [
        (3, 3, False),  # Phase 1
        (1, 3, False),  # Phase 2
        (1, 1, False),  # Phase 3
        (1, 1, True),  # Phase 4
    ]:
        while len(sequences) > len(line_Y):
            best_merger = None
            best_error = np.inf
            for i in range(len(sequences) - 1):
                if len(sequences[i]) < min_i:
                    continue  # first sequence too short, skip to next i
                for j in range(i + 1, len(sequences)):
                    if len(sequences[j]) < min_j:
                        continue  # second sequence too short, skip to next j
                    candidate_XY = fixation_XY[sequences[i] + sequences[j]]
                    gradient, intercept = np.polyfit(candidate_XY[:, 0], candidate_XY[:, 1], 1)
                    residuals = candidate_XY[:, 1] - (gradient * candidate_XY[:, 0] + intercept)
                    error = np.sqrt(sum(residuals**2) / len(candidate_XY))
                    if remove_constraints or (abs(gradient) < gradient_thresh and error < error_thresh):
                        if error < best_error:
                            best_merger = (i, j)
                            best_error = error
            if best_merger is None:
                break  # no possible mergers, break while and move to next phase
            merge_i, merge_j = best_merger
            merged_sequence = sequences[merge_i] + sequences[merge_j]
            sequences.append(merged_sequence)
            del sequences[merge_j], sequences[merge_i]
    mean_Y = [fixation_XY[sequence, 1].mean() for sequence in sequences]
    ordered_sequence_indices = np.argsort(mean_Y)
    for line_i, sequence_i in enumerate(ordered_sequence_indices):
        fixation_XY[sequences[sequence_i], 1] = line_Y[line_i]
    return fixation_XY[:, 1]


def regress(
    fixation_XY,
    midlines,
    slope_bounds=(-0.1, 0.1),
    offset_bounds=(-50, 50),
    std_bounds=(1, 20),
):
    """
    Find *m* regression lines that best fit the fixations and group fixations
    according to best fit regression lines, and then assign groups to text
    lines in positional order. Default params: `slope_bounds=(-0.1, 0.1)`,
    `offset_bounds=(-50, 50)`, `std_bounds=(1, 20)`. Requires SciPy.
    Original method by [Cohen (2013)](https://doi.org/10.3758/s13428-012-0280-3).
    """
    try:
        import numpy as np
        from scipy.optimize import minimize
        from scipy.stats import norm
    except ModuleNotFoundError as e:
        e.msg = "The regress method requires SciPy."
        raise
    fixation_XY = np.array(fixation_XY)
    line_Y = np.array(midlines)
    density = np.zeros((len(fixation_XY), len(line_Y)))

    def fit_lines(params):
        k = slope_bounds[0] + (slope_bounds[1] - slope_bounds[0]) * norm.cdf(params[0])
        o = offset_bounds[0] + (offset_bounds[1] - offset_bounds[0]) * norm.cdf(params[1])
        s = std_bounds[0] + (std_bounds[1] - std_bounds[0]) * norm.cdf(params[2])
        predicted_Y_from_slope = fixation_XY[:, 0] * k
        line_Y_plus_offset = line_Y + o
        for line_i in range(len(line_Y)):
            fit_Y = predicted_Y_from_slope + line_Y_plus_offset[line_i]
            density[:, line_i] = norm.logpdf(fixation_XY[:, 1], fit_Y, s)
        return -sum(density.max(axis=1))

    best_fit = minimize(fit_lines, [0, 0, 0], method="powell")
    fit_lines(best_fit.x)
    return line_Y[density.argmax(axis=1)]


def segment(fixation_XY, midlines, text_right_to_left=False):
    """
    Segment fixation sequence into *m* subsequences based on *m*–1 most-likely
    return sweeps, and then assign subsequences to text lines in chronological
    order. Requires NumPy. Original method by
    [Abdulin & Komogortsev (2015)](https://doi.org/10.1109/BTAS.2015.7358786).
    """
    try:
        import numpy as np
    except ModuleNotFoundError as e:
        e.msg = "The segment method requires NumPy."
        raise
    fixation_XY = np.array(fixation_XY)
    line_Y = np.array(midlines)
    diff_X = np.diff(fixation_XY[:, 0])
    saccades_ordered_by_length = np.argsort(diff_X)
    if text_right_to_left:
        line_change_indices = saccades_ordered_by_length[-(len(line_Y) - 1) :]
    else:
        line_change_indices = saccades_ordered_by_length[: len(line_Y) - 1]
    current_line_i = 0
    for fixation_i in range(len(fixation_XY)):
        fixation_XY[fixation_i, 1] = line_Y[current_line_i]
        if fixation_i in line_change_indices:
            current_line_i += 1
    return fixation_XY[:, 1]


def split(fixation_XY, midlines, text_right_to_left=False):
    """
    Split fixation sequence into subsequences based on best candidate return
    sweeps, and then assign subsequences to closest text lines. Requires
    SciPy. Original method by [Carr et al. (2022)](https://doi.org/10.3758/s13428-021-01554-0).
    """
    try:
        import numpy as np
        from scipy.cluster.vq import kmeans2
    except ModuleNotFoundError as e:
        e.msg = "The split method requires SciPy."
        raise
    fixation_XY = np.array(fixation_XY)
    line_Y = np.array(midlines)
    diff_X = np.array(np.diff(fixation_XY[:, 0]), dtype=float).reshape(-1, 1)
    centers, clusters = kmeans2(diff_X, 2, iter=100, minit="++", missing="raise")
    if text_right_to_left:
        sweep_marker = np.argmax(centers)
    else:
        sweep_marker = np.argmin(centers)
    end_line_indices = list(np.where(clusters == sweep_marker)[0] + 1)
    end_line_indices.append(len(fixation_XY))
    start_of_line = 0
    for end_of_line in end_line_indices:
        mean_y = np.mean(fixation_XY[start_of_line:end_of_line, 1])
        line_i = np.argmin(abs(line_Y - mean_y))
        fixation_XY[start_of_line:end_of_line] = line_Y[line_i]
        start_of_line = end_of_line
    return fixation_XY[:, 1]


def stretch(fixation_XY, midlines, stretch_bounds=(0.9, 1.1), offset_bounds=(-50, 50)):
    """
    Find a stretch factor and offset that results in a good alignment between
    the fixations and lines of text, and then assign the transformed fixations
    to the closest text lines. Default params: `stretch_bounds=(0.9, 1.1)`,
    `offset_bounds=(-50, 50)`. Requires SciPy.
    Original method by [Lohmeier (2015)](http://www.monochromata.de/master_thesis/ma1.3.pdf).
    """
    try:
        import numpy as np
        from scipy.optimize import minimize
    except ModuleNotFoundError as e:
        e.msg = "The stretch method requires SciPy."
        raise
    fixation_Y = np.array(fixation_XY)[:, 1]
    line_Y = np.array(midlines)
    n = len(fixation_Y)
    corrected_Y = np.zeros(n)

    def fit_lines(params):
        candidate_Y = fixation_Y * params[0] + params[1]
        for fixation_i in range(n):
            line_i = np.argmin(abs(line_Y - candidate_Y[fixation_i]))
            corrected_Y[fixation_i] = line_Y[line_i]
        return sum(abs(candidate_Y - corrected_Y))

    best_fit = minimize(fit_lines, [1, 0], method="powell", bounds=[stretch_bounds, offset_bounds])
    fit_lines(best_fit.x)
    return corrected_Y


def warp(fixation_XY, word_center_list):
    """
    Map fixations to word centers using [Dynamic Time
    Warping](https://en.wikipedia.org/wiki/Dynamic_time_warping). This finds a
    monotonically increasing mapping between fixations and words with the
    shortest overall distance, effectively resulting in *m* subsequences.
    Fixations are then assigned to the lines that their mapped words belong
    to, effectively assigning subsequences to text lines in chronological
    order. Requires NumPy.
    Original method by [Carr et al. (2022)](https://doi.org/10.3758/s13428-021-01554-0).
    """
    try:
        import numpy as np
    except ModuleNotFoundError as e:
        e.msg = "The warp method requires NumPy."
        raise
    fixation_XY = np.array(fixation_XY)
    word_XY = np.array([word_center for word_center in word_center_list])
    n1 = len(fixation_XY)
    n2 = len(word_XY)
    cost = np.zeros((n1 + 1, n2 + 1))
    cost[0, :] = np.inf
    cost[:, 0] = np.inf
    cost[0, 0] = 0
    for fixation_i in range(n1):
        for word_i in range(n2):
            distance = np.sqrt(sum((fixation_XY[fixation_i] - word_XY[word_i]) ** 2))
            cost[fixation_i + 1, word_i + 1] = distance + min(
                cost[fixation_i, word_i + 1],
                cost[fixation_i + 1, word_i],
                cost[fixation_i, word_i],
            )
    cost = cost[1:, 1:]
    warping_path = [[] for _ in range(n1)]
    while fixation_i > 0 or word_i > 0:
        warping_path[fixation_i].append(word_i)
        possible_moves = [np.inf, np.inf, np.inf]
        if fixation_i > 0 and word_i > 0:
            possible_moves[0] = cost[fixation_i - 1, word_i - 1]
        if fixation_i > 0:
            possible_moves[1] = cost[fixation_i - 1, word_i]
        if word_i > 0:
            possible_moves[2] = cost[fixation_i, word_i - 1]
        best_move = np.argmin(possible_moves)
        if best_move == 0:
            fixation_i -= 1
            word_i -= 1
        elif best_move == 1:
            fixation_i -= 1
        else:
            word_i -= 1
    warping_path[0].append(0)
    for fixation_i, words_mapped_to_fixation_i in enumerate(warping_path):
        candidate_Y = list(word_XY[words_mapped_to_fixation_i, 1])
        fixation_XY[fixation_i, 1] = max(set(candidate_Y), key=candidate_Y.count)
    return fixation_XY[:, 1]


def dynamic_time_warping(sequence1, sequence2):
    n1 = len(sequence1)
    n2 = len(sequence2)
    dtw_cost = np.zeros((n1 + 1, n2 + 1))
    dtw_cost[0, :] = np.inf
    dtw_cost[:, 0] = np.inf
    dtw_cost[0, 0] = 0
    for i in range(n1):
        for j in range(n2):
            this_cost = np.sqrt(sum((sequence1[i] - sequence2[j]) ** 2))
            dtw_cost[i + 1, j + 1] = this_cost + min(dtw_cost[i, j + 1], dtw_cost[i + 1, j], dtw_cost[i, j])
    dtw_cost = dtw_cost[1:, 1:]
    dtw_path = [[] for _ in range(n1)]
    while i > 0 or j > 0:
        dtw_path[i].append(j)
        possible_moves = [np.inf, np.inf, np.inf]
        if i > 0 and j > 0:
            possible_moves[0] = dtw_cost[i - 1, j - 1]
        if i > 0:
            possible_moves[1] = dtw_cost[i - 1, j]
        if j > 0:
            possible_moves[2] = dtw_cost[i, j - 1]
        best_move = np.argmin(possible_moves)
        if best_move == 0:
            i -= 1
            j -= 1
        elif best_move == 1:
            i -= 1
        else:
            j -= 1
    dtw_path[0].append(0)
    return dtw_cost[-1, -1], dtw_path


def wisdom_of_the_crowd(assignments):
    """
    For each fixation, choose the y-value with the most votes across multiple
    algorithms. In the event of a tie, the left-most algorithm is given
    priority.
    """
    assignments = np.column_stack(assignments)
    correction = []
    for row in assignments:
        candidates = list(row)
        candidate_counts = {y: candidates.count(y) for y in set(candidates)}
        best_count = max(candidate_counts.values())
        best_candidates = [y for y, c in candidate_counts.items() if c == best_count]
        if len(best_candidates) == 1:
            correction.append(best_candidates[0])
        else:
            for y in row:
                if y in best_candidates:
                    correction.append(y)
                    break
    return correction