GazeGenie / eyekit_measures.py
hugpv's picture
initial commit
da572bf
raw
history blame
7.75 kB
import copy
import eyekit as ek
import numpy as np
import pandas as pd
from PIL import Image
from icecream import ic
import time
ic.configureOutput(includeContext=True)
MEASURES_DICT = {
"number_of_fixations": [],
"initial_fixation_duration": [],
"first_of_many_duration": [],
"total_fixation_duration": [],
"gaze_duration": [],
"go_past_duration": [],
"second_pass_duration": [],
"initial_landing_position": [],
"initial_landing_distance": [],
"landing_distances": [],
"number_of_regressions_in": [],
}
def get_fix_seq_and_text_block(
dffix,
trial,
x_txt_start=None,
y_txt_start=None,
font_face="Courier New",
font_size=None,
line_height=None,
use_corrected_fixations=True,
correction_algo="warp",
):
if use_corrected_fixations and correction_algo is not None:
fixations_tuples = [
(
(x[1]["x"], x[1][f"y_{correction_algo}"], x[1]["corrected_start_time"], x[1]["corrected_end_time"])
if x[1]["corrected_start_time"] < x[1]["corrected_end_time"]
else (x[1]["x"], x[1]["y"], x[1]["corrected_start_time"], x[1]["corrected_end_time"] + 1)
)
for x in dffix.iterrows()
]
else:
fixations_tuples = [
(
(x[1]["x"], x[1]["y"], x[1]["corrected_start_time"], x[1]["corrected_end_time"])
if x[1]["corrected_start_time"] < x[1]["corrected_end_time"]
else (x[1]["x"], x[1]["y"], x[1]["corrected_start_time"], x[1]["corrected_end_time"] + 1)
)
for x in dffix.iterrows()
]
if "display_coords" in trial:
display_coords = trial["display_coords"]
else:
display_coords = (0, 0, 1920, 1080)
screen_size = ((display_coords[2] - display_coords[0]), (display_coords[3] - display_coords[1]))
try:
fixation_sequence = ek.FixationSequence(fixations_tuples)
except Exception as e:
ic(e)
ic(f"Creating fixation failed for {trial['trial_id']} {trial['filename']}")
return None, None, screen_size
y_diffs = np.unique(trial["line_heights"])
if len(y_diffs) == 1:
y_diff = y_diffs[0]
else:
y_diff = np.min(y_diffs)
chars_list = trial["chars_list"]
max_line = int(chars_list[-1]["assigned_line"])
words_on_lines = {x: [] for x in range(int(max_line) + 1)}
[words_on_lines[x["assigned_line"]].append(x["char"]) for x in chars_list]
sentence_list = ["".join([s for s in v]) for idx, v in words_on_lines.items()]
if x_txt_start is None:
x_txt_start = float(chars_list[0]["char_xmin"])
if y_txt_start is None:
y_txt_start = float(chars_list[0]["char_ymax"])
if font_face is None and "font" in trial:
font_face = trial["font"]
elif font_face is None:
font_face = "DejaVu Sans Mono"
if font_size is None and "font_size" in trial:
font_size = trial["font_size"]
elif font_size is None:
font_size = float(y_diff * 0.333) # pixel to point conversion
if line_height is None:
line_height = float(y_diff)
textblock_input_dict = dict(
text=sentence_list,
position=(float(x_txt_start), float(y_txt_start)),
font_face=font_face,
line_height=line_height,
font_size=font_size,
anchor="left",
align="left",
)
textblock = ek.TextBlock(**textblock_input_dict)
ek.io.save(fixation_sequence, f'results/fixation_sequence_eyekit_{trial["trial_id"]}.json', compress=False)
ek.io.save(textblock, f'results/textblock_eyekit_{trial["trial_id"]}.json', compress=False)
return fixations_tuples, textblock_input_dict, screen_size
def eyekit_plot(fixations_tuples, textblock_input_dict, screen_size):
textblock = ek.TextBlock(**textblock_input_dict)
img = ek.vis.Image(*screen_size)
img.draw_text_block(textblock)
for word in textblock.words():
img.draw_rectangle(word, color="hotpink")
fixation_sequence = ek.FixationSequence(fixations_tuples)
img.draw_fixation_sequence(fixation_sequence)
img.save("temp_eyekit_img.png", crop_margin=200)
img_png = Image.open("temp_eyekit_img.png")
return img_png
def plot_with_measure(fixations_tuples, textblock_input_dict, screen_size, measure, use_characters=False):
textblock = ek.TextBlock(**textblock_input_dict)
fixation_sequence = ek.FixationSequence(fixations_tuples)
eyekitplot_img = eyekit_plot(fixations_tuples, textblock_input_dict, screen_size)
eyekitplot_img = ek.vis.Image(*screen_size)
eyekitplot_img.draw_text_block(textblock)
if use_characters:
measure_results = getattr(ek.measure, measure)(textblock.characters(), fixation_sequence)
enum = textblock.characters()
else:
measure_results = getattr(ek.measure, measure)(textblock.words(), fixation_sequence)
enum = textblock.words()
for word in enum:
eyekitplot_img.draw_rectangle(word, color="lightseagreen")
x = word.onset
y = word.y_br - 3
label = f"{measure_results[word.id]}"
eyekitplot_img.draw_annotation((x, y), label, color="lightseagreen", font_face="Arial bold", font_size=15)
eyekitplot_img.draw_fixation_sequence(fixation_sequence, color="gray")
eyekitplot_img.save("multiline_passage_piccol.png", crop_margin=100)
img_png = Image.open("multiline_passage_piccol.png")
return img_png
def get_eyekit_measures(fixations_tuples, textblock_input_dict, trial, get_char_measures=False):
textblock = ek.TextBlock(**textblock_input_dict)
fixation_sequence = ek.FixationSequence(fixations_tuples)
measures = copy.deepcopy(MEASURES_DICT)
words = []
for w in textblock.words():
words.append(w.text)
for m in measures.keys():
measures[m].append(getattr(ek.measure, m)(w, fixation_sequence))
word_measures_df = pd.DataFrame(measures)
word_measures_df["word_number"] = np.arange(0, len(words))
word_measures_df["word"] = words
first_column = word_measures_df.pop("word")
word_measures_df.insert(0, "word", first_column)
first_column = word_measures_df.pop("word_number")
word_measures_df.insert(0, "word_number", first_column)
if "item" in trial and "item" not in word_measures_df.columns:
word_measures_df.insert(loc=0, column="item", value=trial["item"])
if "condition" in trial and "condition" not in word_measures_df.columns:
word_measures_df.insert(loc=0, column="condition", value=trial["condition"])
if "trial_id" in trial and "trial_id" not in word_measures_df.columns:
word_measures_df.insert(loc=0, column="trial_id", value=trial["trial_id"])
if "subject" in trial and "subject" not in word_measures_df.columns:
word_measures_df.insert(loc=0, column="subject", value=trial["subject"])
if get_char_measures:
measures = copy.deepcopy(MEASURES_DICT)
characters = []
for c in textblock.characters():
characters.append(c.text)
for m in measures.keys():
measures[m].append(getattr(ek.measure, m)(c, fixation_sequence))
character_measures_df = pd.DataFrame(measures)
character_measures_df["char_number"] = np.arange(0, len(characters))
character_measures_df["character"] = characters
first_column = character_measures_df.pop("character")
character_measures_df.insert(0, "character", first_column)
first_column = character_measures_df.pop("char_number")
character_measures_df.insert(0, "char_number", first_column)
else:
character_measures_df = None
return word_measures_df, character_measures_df