import pickle from io import StringIO import re import zipfile import os import plotly.graph_objects as go from io import StringIO import numpy as np import pandas as pd from PIL import Image import json from matplotlib import pyplot as plt import pathlib as pl import matplotlib as mpl from streamlit.runtime.uploaded_file_manager import UploadedFile from tqdm.auto import tqdm import time import requests from icecream import ic from matplotlib import font_manager from multi_proc_funcs import ( COLORS, PLOTS_FOLDER, RESULTS_FOLDER, add_boxes_to_ax, add_text_to_ax, matplotlib_plot_df, save_trial_to_json, sigmoid, ) import emreading_funcs as emf ic.configureOutput(includeContext=True) TEMP_FIGURE_STIMULUS_PATH = PLOTS_FOLDER / "temp_matplotlib_plot_stimulus.png" all_fonts = [x.name for x in font_manager.fontManager.ttflist] mpl.use("agg") DIST_MODELS_FOLDER = pl.Path("models") IMAGENET_MEAN = [0.485, 0.456, 0.406] IMAGENET_STD = [0.229, 0.224, 0.225] PLOTS_FOLDER = pl.Path("plots") names_dict = { "SSACC": {"Descr": "Start of Saccade", "Pattern": "SSACC "}, "ESACC": { "Descr": "End of Saccade", "Pattern": "ESACC ", }, "SFIX": {"Descr": "Start of Fixation", "Pattern": "SFIX "}, "EFIX": {"Descr": "End of Fixation", "Pattern": "EFIX "}, "SBLINK": {"Descr": "Start of Blink", "Pattern": "SBLINK "}, "EBLINK": {"Descr": "End of Blink", "Pattern": "EBLINK "}, "DISPLAY ON": {"Descr": "Actual start of Trial", "Pattern": "DISPLAY ON"}, } metadata_strs = ["DISPLAY COORDS", "GAZE_COORDS", "FRAMERATE"] POPEYE_FIXATION_COLS_DICT = { "start": "start_time", "stop": "end_time", "xs": "x", "ys": "y", } EMREADING_COLS_DROPLIST = ["hasText", "char_trial"] EMREADING_COLS_DICT = { "sub": "subject", "item": "item", "condition": "condition", "SFIX": "start_time", "EFIX": "end_time", "xPos": "x", "yPos": "y", "fix_number": "fixation_number", "fix_dur": "duration", "wordID": "on_word_EM", "outOfBnds": "out_of_bounds", "outsideText": "out_of_text_area", } def download_url(url, target_filename): max_retries = 4 for attempt in range(1, max_retries + 1): try: r = requests.get(url) if r.status_code != 200: ic(f"Download failed due to unsuccessful response from server: {r.status_code}") return -1 open(target_filename, "wb").write(r.content) return 0 except Exception as e: if attempt < max_retries: time.sleep(2 * attempt) ic(f"Download failed due to an error; will try again in {attempt*2} seconds:", e) else: ic(f"Failed after all attempts ({url}). Error details:\n{e}") return -1 def asc_to_trial_ids( asc_file, close_gap_between_words, paragraph_trials_only, ias_files, trial_start_keyword, end_trial_at_keyword ): asc_encoding = ["ISO-8859-15", "UTF-8"][0] trials_dict, lines = file_to_trials_and_lines( asc_file, asc_encoding, close_gap_between_words=close_gap_between_words, paragraph_trials_only=paragraph_trials_only, uploaded_ias_files=ias_files, trial_start_keyword=trial_start_keyword, end_trial_at_keyword=end_trial_at_keyword, ) enum = ( trials_dict["paragraph_trials"] if paragraph_trials_only and "paragraph_trials" in trials_dict.keys() else range(trials_dict["max_trial_idx"]) ) trials_by_ids = {trials_dict[idx]["trial_id"]: trials_dict[idx] for idx in enum} return trials_by_ids, lines, trials_dict def get_trials_list( asc_file, close_gap_between_words, paragraph_trials_only, ias_files, trial_start_keyword, end_trial_at_keyword ): if hasattr(asc_file, "name"): savename = pl.Path(asc_file.name).stem else: savename = pl.Path(asc_file).stem trials_by_ids, lines, trials_dict = asc_to_trial_ids( asc_file, close_gap_between_words=close_gap_between_words, paragraph_trials_only=paragraph_trials_only, ias_files=ias_files, trial_start_keyword=trial_start_keyword, end_trial_at_keyword=end_trial_at_keyword, ) trial_keys = list(trials_by_ids.keys()) savename = RESULTS_FOLDER / f"{savename}_metadata_overview.json" offload_list = [ "gaze_df", "dffix", "chars_df", "saccade_df", "x_char_unique", "line_heights", "chars_list", "words_list", "dffix_sacdf_popEye", "fixdf_popEye", "saccade_df", "sacdf_popEye", "combined_df", "events_df", ] trials_dict_cut_down = {} for k_outer, v_outer in trials_dict.items(): if isinstance(v_outer, dict): trials_dict_cut_down[k_outer] = {} for prop, val in v_outer.items(): if prop not in offload_list: trials_dict_cut_down[k_outer][prop] = val else: trials_dict_cut_down[k_outer] = v_outer save_trial_to_json(trials_dict_cut_down, savename=savename) return trial_keys, trials_by_ids, lines, asc_file, trials_dict def calc_xdiff_ydiff(line_xcoords_no_pad, line_ycoords_no_pad, line_heights, allow_multiple_values=False): x_diffs = np.unique(np.diff(line_xcoords_no_pad)) if len(x_diffs) == 1: x_diff = x_diffs[0] elif not allow_multiple_values: x_diff = np.min(x_diffs) else: x_diff = x_diffs if np.unique(line_ycoords_no_pad).shape[0] == 1: return x_diff, line_heights[0] y_diffs = np.unique(np.diff(line_ycoords_no_pad)) if len(y_diffs) == 1: y_diff = y_diffs[0] elif len(y_diffs) == 0: y_diff = 0 elif not allow_multiple_values: y_diff = np.min(y_diffs) else: y_diff = y_diffs return np.round(x_diff, decimals=2), np.round(y_diff, decimals=2) def add_words(chars_list): chars_list_reconstructed = [] words_list = [] sentence_list = [] sentence_start_idx = 0 sentence_num = 0 word_start_idx = 0 chars_df = pd.DataFrame(chars_list) chars_df["char_width"] = chars_df.char_xmax - chars_df.char_xmin word_dict = None on_line_num = -1 line_change_on_next_char = False num_chars = len(chars_list) for idx, char_dict in enumerate(chars_list): # check if line change will happen after current char on_line_num = char_dict["assigned_line"] if idx < num_chars - 1: line_change_on_next_char = on_line_num != chars_list[idx + 1]["assigned_line"] else: line_change_on_next_char = False chars_list_reconstructed.append(char_dict) if char_dict["char"] in [" "] or len(chars_list_reconstructed) == len(chars_list) or line_change_on_next_char: word_xmin = chars_list_reconstructed[word_start_idx]["char_xmin"] if chars_list_reconstructed[-1]["char"] == " " and len(chars_list_reconstructed) != 1: word_xmax = chars_list_reconstructed[-2]["char_xmax"] word = "".join( [ chars_list_reconstructed[idx]["char"] for idx in range(word_start_idx, len(chars_list_reconstructed) - 1) ] ) elif len(chars_list_reconstructed) == 1: word_xmax = chars_list_reconstructed[-1]["char_xmax"] word = " " else: word = "".join( [ chars_list_reconstructed[idx]["char"] for idx in range(word_start_idx, len(chars_list_reconstructed)) ] ) word_xmax = chars_list_reconstructed[-1]["char_xmax"] word_ymin = chars_list_reconstructed[word_start_idx]["char_ymin"] word_ymax = chars_list_reconstructed[word_start_idx]["char_ymax"] word_x_center = round((word_xmax - word_xmin) / 2 + word_xmin, ndigits=2) word_y_center = round((word_ymax - word_ymin) / 2 + word_ymin, ndigits=2) word_length = len(word) assigned_line = chars_list_reconstructed[word_start_idx]["assigned_line"] word_dict = dict( word_number=len(words_list), word=word, word_length=word_length, word_xmin=word_xmin, word_xmax=word_xmax, word_ymin=word_ymin, word_ymax=word_ymax, word_x_center=word_x_center, word_y_center=word_y_center, assigned_line=assigned_line, ) if len(word) > 0 and word != " ": words_list.append(word_dict) for cidx, char_dict in enumerate(chars_list_reconstructed[word_start_idx:]): if char_dict["char"] == " ": char_dict["in_word_number"] = len(words_list) char_dict["in_word"] = " " char_dict["num_letters_from_start_of_word"] = 0 else: char_dict["in_word_number"] = len(words_list) - 1 char_dict["in_word"] = word char_dict["num_letters_from_start_of_word"] = cidx word_start_idx = idx + 1 if chars_list_reconstructed[-1]["char"] in [".", "!", "?"] or idx == (len(chars_list) - 1): if idx != sentence_start_idx: chars_df_temp = pd.DataFrame(chars_list_reconstructed[sentence_start_idx:]) line_texts = [] for sidx, subdf in chars_df_temp.groupby("assigned_line"): line_text = "_".join(subdf.char.values) line_text = line_text.replace("_ _", " ") line_text = line_text.replace("_", "") line_texts.append(line_text.strip()) sentence_text = " ".join(line_texts) sentence_dict = dict(sentence_num=sentence_num, sentence_text=sentence_text) sentence_list.append(sentence_dict) for c in chars_list_reconstructed[sentence_start_idx:]: c["in_sentence_number"] = sentence_num c["in_sentence"] = sentence_text sentence_start_idx = len(chars_list_reconstructed) sentence_num += 1 else: sentence_list[-1]["sentence_text"] += chars_list_reconstructed[sentence_start_idx]["char"] chars_list_reconstructed[idx]["in_sentence_number"] = sentence_list[-1]["sentence_num"] chars_list_reconstructed[idx]["in_sentence"] = sentence_list[-1]["sentence_text"] for cidx, char_dict in enumerate(chars_list_reconstructed): if ( char_dict["char"] == " " and (cidx + 1) < len(chars_list_reconstructed) and char_dict["assigned_line"] == chars_list_reconstructed[cidx + 1]["assigned_line"] ): char_dict["in_word_number"] = chars_list_reconstructed[cidx + 1]["in_word_number"] char_dict["in_word"] = chars_list_reconstructed[cidx + 1]["in_word"] last_letter_in_word = words_list[-1]["word"][-1] last_letter_in_chars_list_reconstructed = char_dict["char"] if last_letter_in_word != last_letter_in_chars_list_reconstructed: if last_letter_in_chars_list_reconstructed in [".", "!", "?"]: words_list[-1] = dict( word_number=len(words_list), word=words_list[-1]["word"] + char_dict["char"], word_length=len(words_list[-1]["word"] + char_dict["char"]), word_xmin=words_list[-1]["word_xmin"], word_xmax=char_dict["char_xmax"], word_ymin=words_list[-1]["word_ymin"], word_ymax=words_list[-1]["word_ymax"], assigned_line=assigned_line, ) word_x_center = round( (words_list[-1]["word_xmax"] - words_list[-1]["word_xmin"]) / 2 + words_list[-1]["word_xmin"], ndigits=2 ) word_y_center = round( (words_list[-1]["word_ymax"] - word_dict["word_ymin"]) / 2 + words_list[-1]["word_ymin"], ndigits=2 ) words_list[-1]["word_x_center"] = word_x_center words_list[-1]["word_y_center"] = word_y_center else: word_dict = dict( word_number=len(words_list), word=char_dict["char"], word_length=1, word_xmin=char_dict["char_xmin"], word_xmax=char_dict["char_xmax"], word_ymin=char_dict["char_ymin"], word_ymax=char_dict["char_ymax"], word_x_center=char_dict["char_x_center"], word_y_center=char_dict["char_y_center"], assigned_line=assigned_line, ) words_list.append(word_dict) chars_list_reconstructed[-1]["in_word_number"] = len(words_list) - 1 chars_list_reconstructed[-1]["in_word"] = word_dict["word"] chars_list_reconstructed[-1]["num_letters_from_start_of_word"] = 0 if len(sentence_list) > 0: chars_list_reconstructed[-1]["in_sentence_number"] = sentence_num - 1 chars_list_reconstructed[-1]["in_sentence"] = sentence_list[-1]["sentence_text"] else: ic(f"Warning Sentence list empty: {sentence_list}") return words_list, chars_list_reconstructed def read_ias_file(ias_file, prefix): if isinstance(ias_file, UploadedFile): lines = StringIO(ias_file.getvalue().decode("utf-8")).readlines() ias_dicts = [] for l in lines: lsplit = l.strip().split("\t") ldict = { f"{prefix}_number": float(lsplit[1]), f"{prefix}_xmin": float(lsplit[2]), f"{prefix}_xmax": float(lsplit[4]), f"{prefix}_ymin": float(lsplit[3]), f"{prefix}_ymax": float(lsplit[5]), prefix: lsplit[6], } ias_dicts.append(ldict) ias_df = pd.DataFrame(ias_dicts) else: ias_df = pd.read_csv(ias_file, delimiter="\t", header=None) ias_df = ias_df.rename( { 1: f"{prefix}_number", 2: f"{prefix}_xmin", 4: f"{prefix}_xmax", 3: f"{prefix}_ymin", 5: f"{prefix}_ymax", 6: prefix, }, axis=1, ) first_line_df = ias_df[ias_df[f"{prefix}_ymin"] == ias_df.loc[0, f"{prefix}_ymin"]] words_include_spaces = ( first_line_df[f"{prefix}_xmax"].values == first_line_df[f"{prefix}_xmin"].shift(-1).values ).any() ias_df[f"{prefix}_width"] = ias_df[f"{prefix}_xmax"] - ias_df[f"{prefix}_xmin"] if words_include_spaces: ias_df[f"{prefix}_length"] = ias_df[prefix].map(lambda x: len(x) + 1) ias_df[f"{prefix}_width_per_length"] = ias_df[f"{prefix}_width"] / ias_df[f"{prefix}_length"] ias_df[f"{prefix}_xmax"] = (ias_df[f"{prefix}_xmax"] - ias_df[f"{prefix}_width_per_length"]).round(2) ias_df[f"{prefix}_x_center"] = ( (ias_df[f"{prefix}_xmax"] - ias_df[f"{prefix}_xmin"]) / 2 + ias_df[f"{prefix}_xmin"] ).round(2) ias_df[f"{prefix}_y_center"] = ( (ias_df[f"{prefix}_ymax"] - ias_df[f"{prefix}_ymin"]) / 2 + ias_df[f"{prefix}_ymin"] ).round(2) unique_midlines = list(np.unique(ias_df[f"{prefix}_y_center"])) assigned_lines = [unique_midlines.index(x) for x in ias_df[f"{prefix}_y_center"]] ias_df["assigned_line"] = assigned_lines ias_df[f"{prefix}_number"] = np.arange(ias_df.shape[0]) return ias_df def get_chars_list_from_words_list(ias_df, prefix="word"): ias_df.reset_index(inplace=True, drop=True) unique_midlines = list(np.unique(ias_df[f"{prefix}_y_center"])) chars_list = [] for (idx, row), (next_idx, next_row) in zip(ias_df.iterrows(), ias_df.shift(-1).iterrows()): word = str(row[prefix]) letter_width = (row[f"{prefix}_xmax"] - row[f"{prefix}_xmin"]) / len(word) for i_w, letter in enumerate(word): char_dict = dict( in_word_number=idx, in_word=word, char_xmin=round(row[f"{prefix}_xmin"] + i_w * letter_width, 2), char_xmax=round(row[f"{prefix}_xmin"] + (i_w + 1) * letter_width, 2), char_ymin=row[f"{prefix}_ymin"], char_ymax=row[f"{prefix}_ymax"], char=letter, ) char_dict["char_x_center"] = round( (char_dict["char_xmax"] - char_dict["char_xmin"]) / 2 + char_dict["char_xmin"], ndigits=2 ) char_dict["char_y_center"] = round( (row[f"{prefix}_ymax"] - row[f"{prefix}_ymin"]) / 2 + row[f"{prefix}_ymin"], ndigits=2 ) if i_w >= len(word) + 1: break char_dict["assigned_line"] = unique_midlines.index(char_dict["char_y_center"]) chars_list.append(char_dict) if chars_list[-1]["char"] != " " and row.assigned_line == next_row.assigned_line: char_dict = dict( char_xmin=chars_list[-1]["char_xmax"], char_xmax=round(chars_list[-1]["char_xmax"] + letter_width, 2), char_ymin=row[f"{prefix}_ymin"], char_ymax=row[f"{prefix}_ymax"], char=" ", ) char_dict["char_x_center"] = round( (char_dict["char_xmax"] - char_dict["char_xmin"]) / 2 + char_dict["char_xmin"], ndigits=2 ) char_dict["char_y_center"] = round( (row[f"{prefix}_ymax"] - row[f"{prefix}_ymin"]) / 2 + row[f"{prefix}_ymin"], ndigits=2 ) char_dict["assigned_line"] = unique_midlines.index(char_dict["char_y_center"]) chars_list.append(char_dict) chars_df = pd.DataFrame(chars_list) chars_df.loc[:, ["in_word_number", "in_word"]] = chars_df.loc[:, ["in_word_number", "in_word"]].copy().ffill(axis=0) return chars_df.to_dict("records") def check_values(v1, v2): """Function that compares two lists for equality. Returns True if both lists are the same; False if they are not; and None if either is None.""" # Check if any of the lists is None if v1 is None or v2 is None or pd.isna(v1) or pd.isna(v2): return None # Compare elements in v1 with corresponding elements in v2 if v1 != v2: return False if v1 != v2: return False return True def asc_lines_to_trials_by_trail_id( lines: list, paragraph_trials_only=True, filename: str = "", close_gap_between_words=True, ias_files=[], start_trial_at_keyword="START", end_trial_at_keyword="END", ) -> dict: if len(ias_files) > 0: ias_files_dict = {pl.Path(f.name).stem: f for f in ias_files} else: ias_files_dict = {} if hasattr(filename, "name"): filename = filename.name subject = pl.Path(filename).stem y_px = [] x_px = [] calibration_offset = [] calibration_max_error = [] calibration_time = [] calibration_avg_error = [] trial_var_block_lines = None question_answer = None question_correct = None condition = "UNKNOWN" item = "UNKNOWN" depend = "UNKNOWN" trial_index = None fps = None display_coords = None trial_var_block_idx = -1 trials_dict = dict(paragraph_trials=[], paragraph_trial_IDs=[]) trial_idx = -1 trial_var_block_start_idx = -1 removed_trial_ids = [] ias_file = "" trial_var_block_lines_list = [] if "\n".join(map(str.strip, lines)).find("TRIAL_VAR") != -1: for idx, l in enumerate(tqdm(lines, desc=f"Checking for TRIAL_VAR lines for {filename}")): if trial_var_block_start_idx == -1 and "MSG" not in l: continue if "TRIAL_VAR" in l: if trial_var_block_start_idx == -1: trial_var_block_start_idx = idx continue else: if trial_var_block_start_idx != -1: trial_var_block_stop_idx = idx trial_var_block_lines = [ x.strip() for x in lines[trial_var_block_start_idx:trial_var_block_stop_idx] ] trial_var_block_lines_list.append(trial_var_block_lines) trial_var_block_start_idx = -1 has_trial_var_lines = len(trial_var_block_lines_list) > 0 else: has_trial_var_lines = False for idx, l in enumerate(lines): if "MSG" not in l: continue parts = l.strip().split(" ") if "TRIALID" in l: trial_id = re.split(r"[ :\t]+", l.strip())[-1] trial_id_timestamp = parts[1] trial_idx += 1 if trial_id[0] in ["F", "P", "E"]: parse_dict = emf.parse_itemID(trial_id) condition = parse_dict["condition"] item = parse_dict["item"] depend = parse_dict["depend"] else: parse_dict = {} if trial_id[0] == "F": trial_is = "question" elif trial_id[0] == "P": trial_is = "practice" else: if has_trial_var_lines: trial_var_block_idx += 1 trial_var_block_lines = trial_var_block_lines_list[trial_var_block_idx] image_lines = [s for s in trial_var_block_lines if "img" in s] if len(image_lines) > 0: item = image_lines[0].split(" ")[-1] cond_lines = [s for s in trial_var_block_lines if "cond" in s] if len(cond_lines) > 0: condition = cond_lines[0].split(" ")[-1] item_lines = [s for s in trial_var_block_lines if "item" in s] if len(item_lines) > 0: item = item_lines[0].split(" ")[-1] trial_index_lines = [s for s in trial_var_block_lines if "Trial_Index" in s] if len(trial_index_lines) > 0: trial_index = trial_index_lines[0].split(" ")[-1] question_key_lines = [s for s in trial_var_block_lines if "QUESTION_KEY_PRESSED" in s] if len(question_key_lines) > 0: question_answer = question_key_lines[0].split(" ")[-1] question_response_lines = [s for s in trial_var_block_lines if " RESPONSE" in s] if len(question_response_lines) > 0: question_answer = question_response_lines[0].split(" ")[-1] question_correct_lines = [ s for s in trial_var_block_lines if ("QUESTION_ACCURACY" in s) | (" ACCURACY" in s) ] if len(question_correct_lines) > 0: question_correct = question_correct_lines[0].split(" ")[-1] trial_is_lines = [s for s in trial_var_block_lines if "trial" in s] if len(trial_is_lines) > 0: trial_is_line = trial_is_lines[0].split(" ")[-1] if "pract" in trial_is_line or "end" in trial_is_line: trial_is = "practice" trial_id = f"{trial_is}_{trial_id}" else: trial_is = "paragraph" trial_id = f"{condition}_{trial_is}_{trial_id}" trials_dict["paragraph_trials"].append(trial_idx) trials_dict["paragraph_trial_IDs"].append(trial_id) else: trial_is = "paragraph" trial_id = f"{condition}_{trial_is}_{trial_id}_{trial_idx}" trials_dict["paragraph_trials"].append(trial_idx) trials_dict["paragraph_trial_IDs"].append(trial_id) else: if len(trial_id) > 1: condition = trial_id[1] trial_is = "paragraph" trials_dict["paragraph_trials"].append(trial_idx) trials_dict["paragraph_trial_IDs"].append(trial_id) trials_dict[trial_idx] = dict( subject=subject, filename=filename, trial_idx=trial_idx, trial_id=trial_id, trial_id_idx=idx, trial_id_timestamp=trial_id_timestamp, trial_is=trial_is, trial_var_block_lines=trial_var_block_lines, seq=trial_idx, item=item, depend=depend, condition=condition, parse_dict=parse_dict, ) if question_answer is not None: trials_dict[trial_idx]["question_answer"] = question_answer if question_correct is not None: trials_dict[trial_idx]["question_correct"] = question_correct if trial_index is not None: trials_dict[trial_idx]["trial_index"] = trial_index last_trial_skipped = False elif "TRIAL_RESULT" in l or "stop_trial" in l: trials_dict[trial_idx]["trial_result_idx"] = idx trials_dict[trial_idx]["trial_result_timestamp"] = int(parts[0].split("\t")[1]) if len(parts) > 2: trials_dict[trial_idx]["trial_result_number"] = int(parts[2]) elif "QUESTION_ANSWER" in l and not has_trial_var_lines: trials_dict[trial_idx]["question_answer_idx"] = idx trials_dict[trial_idx]["question_answer_timestamp"] = int(parts[0].split("\t")[1]) if len(parts) > 2: trials_dict[trial_idx]["question_answer_question_trial"] = int( pd.to_numeric(l.strip().split(" ")[-1].strip(), errors="coerce") ) elif "KEYBOARD" in l: trials_dict[trial_idx]["keyboard_press_idx"] = idx trials_dict[trial_idx]["keyboard_press_timestamp"] = int(parts[0].split("\t")[1]) elif "DISPLAY COORDS" in l and display_coords is None: display_coords = (float(parts[-4]), float(parts[-3]), float(parts[-2]), float(parts[-1])) elif "GAZE_COORDS" in l and display_coords is None: display_coords = (float(parts[-4]), float(parts[-3]), float(parts[-2]), float(parts[-1])) elif "FRAMERATE" in l: l_idx = parts.index(metadata_strs[2]) fps = float(parts[l_idx + 1]) elif "TRIAL ABORTED" in l or "TRIAL REPEATED" in l: if not last_trial_skipped: if trial_is == "paragraph": trials_dict["paragraph_trials"].remove(trial_idx) trial_idx -= 1 removed_trial_ids.append(trial_id) last_trial_skipped = True elif "IAREA FILE" in l: ias_file = parts[-1] ias_file_stem = ias_file.split("/")[-1].split("\\")[-1].split(".")[0] trials_dict[trial_idx]["ias_file_from_asc"] = ias_file trials_dict[trial_idx]["ias_file"] = ias_file_stem if item == "UNKNOWN": trials_dict[trial_idx]["item"] = ias_file_stem if ias_file_stem in ias_files_dict: try: ias_file = ias_files_dict[ias_file_stem] ias_df = read_ias_file(ias_file, prefix="word") # TODO make option if word or chars in ias trials_dict[trial_idx]["words_list"] = ias_df.to_dict("records") trials_dict[trial_idx]["chars_list"] = get_chars_list_from_words_list(ias_df, prefix="word") except Exception as e: ic(f"Reading ias file failed") ic(e) else: ic(f"IAS file {ias_file_stem} not found") elif "CALIBRATION" in l and "MSG" in l: calibration_method = parts[3].strip() if trial_idx > -1: trials_dict[trial_idx]["calibration_method"] = calibration_method elif "VALIDATION" in l and "MSG" in l and "ABORTED" not in l: try: calibration_time_line_parts = re.split(r"[ :\t]+", l.strip()) calibration_time.append(float(calibration_time_line_parts[1])) calibration_avg_error.append(float(calibration_time_line_parts[9])) calibration_max_error.append(float(calibration_time_line_parts[11])) calibration_offset.append(float(calibration_time_line_parts[14])) x_px.append(float(calibration_time_line_parts[-2].split(",")[0])) y_px.append(float(calibration_time_line_parts[-2].split(",")[1])) except Exception as e: ic(f"parsing VALIDATION failed for line {l}") trials_df = pd.DataFrame([trials_dict[i] for i in range(trial_idx) if i in trials_dict]) if ( question_correct is None and "trial_result_number" in trials_df.columns and "question_answer_question_trial" in trials_df.columns ): trials_df["question_answer_selection"] = trials_df["trial_result_number"].shift(-1).values trials_df["correct_trial_answer_would_be"] = trials_df["question_answer_question_trial"].shift(-1).values trials_df["question_correct"] = [ check_values(a, b) for a, b in zip(trials_df["question_answer_selection"], trials_df["correct_trial_answer_would_be"]) ] for pidx, prow in trials_df.loc[trials_df.trial_is == "paragraph", :].iterrows(): trials_dict[pidx]["question_correct"] = prow["question_correct"] if prow["question_correct"] is not None: trials_dict[pidx]["question_answer_selection"] = prow["question_answer_selection"] trials_dict[pidx]["correct_trial_answer_would_be"] = prow["correct_trial_answer_would_be"] else: trials_dict[pidx]["question_answer_selection"] = None trials_dict[pidx]["correct_trial_answer_would_be"] = None if "question_correct" in trials_df.columns: paragraph_trials_df = trials_df.loc[trials_df.trial_is == "paragraph", :] overall_question_answer_value_counts = ( paragraph_trials_df["question_correct"].dropna().astype(int).value_counts().to_dict() ) overall_question_answer_value_counts_normed = ( paragraph_trials_df["question_correct"].dropna().astype(int).value_counts(normalize=True).to_dict() ) else: overall_question_answer_value_counts = None overall_question_answer_value_counts_normed = None if paragraph_trials_only: trials_dict_temp = trials_dict.copy() for k in trials_dict_temp.keys(): if k not in ["paragraph_trials"] + trials_dict_temp["paragraph_trials"]: trials_dict.pop(k) if len(trials_dict_temp["paragraph_trials"]): trial_idx = trials_dict_temp["paragraph_trials"][-1] else: return trials_dict trials_dict["display_coords"] = display_coords trials_dict["fps"] = fps trials_dict["max_trial_idx"] = trial_idx trials_dict["overall_question_answer_value_counts"] = overall_question_answer_value_counts trials_dict["overall_question_answer_value_counts_normed"] = overall_question_answer_value_counts_normed enum = ( trials_dict["paragraph_trials"] if ("paragraph_trials" in trials_dict.keys() and paragraph_trials_only) else range(len(trials_dict)) ) for trial_idx in enum: if trial_idx not in trials_dict.keys(): continue if "chars_list" in trials_dict[trial_idx]: chars_list = trials_dict[trial_idx]["chars_list"] else: chars_list = [] if "display_coords" not in trials_dict[trial_idx].keys(): trials_dict[trial_idx]["display_coords"] = trials_dict["display_coords"] trials_dict[trial_idx]["overall_question_answer_value_counts"] = trials_dict[ "overall_question_answer_value_counts" ] trials_dict[trial_idx]["overall_question_answer_value_counts_normed"] = trials_dict[ "overall_question_answer_value_counts_normed" ] trial_start_idx = trials_dict[trial_idx]["trial_id_idx"] trial_end_idx = trials_dict[trial_idx]["trial_result_idx"] trial_lines = lines[trial_start_idx:trial_end_idx] if len(y_px) > 0: trials_dict[trial_idx]["y_px"] = y_px trials_dict[trial_idx]["x_px"] = x_px if "calibration_method" not in trials_dict[trial_idx]: trials_dict[trial_idx]["calibration_method"] = calibration_method trials_dict[trial_idx]["calibration_offset"] = calibration_offset trials_dict[trial_idx]["calibration_max_error"] = calibration_max_error trials_dict[trial_idx]["calibration_time"] = calibration_time trials_dict[trial_idx]["calibration_avg_error"] = calibration_avg_error for idx, l in enumerate(trial_lines): parts = l.strip().split(" ") if "START" in l and " MSG" not in l: trials_dict[trial_idx]["text_end_idx"] = trial_start_idx + idx trials_dict[trial_idx]["start_idx"] = trial_start_idx + idx + 7 trials_dict[trial_idx]["start_time"] = int(parts[0].split("\t")[1]) elif "END" in l and "ENDBUTTON" not in l and " MSG" not in l: trials_dict[trial_idx]["end_idx"] = trial_start_idx + idx - 2 trials_dict[trial_idx]["end_time"] = int(parts[0].split("\t")[1]) elif "MSG" not in l: continue elif "ENDBUTTON" in l: trials_dict[trial_idx]["endbutton_idx"] = trial_start_idx + idx trials_dict[trial_idx]["endbutton_time"] = int(parts[0].split("\t")[1]) elif "SYNCTIME" in l: trials_dict[trial_idx]["synctime"] = trial_start_idx + idx trials_dict[trial_idx]["synctime_time"] = int(parts[0].split("\t")[1]) elif start_trial_at_keyword in l: trials_dict[trial_idx][f"{start_trial_at_keyword}_line_idx"] = trial_start_idx + idx trials_dict[trial_idx][f"{start_trial_at_keyword}_time"] = int(parts[0].split("\t")[1]) elif "GAZE TARGET OFF" in l: trials_dict[trial_idx]["gaze_targ_off_time"] = int(parts[0].split("\t")[1]) elif "GAZE TARGET ON" in l: trials_dict[trial_idx]["gaze_targ_on_time"] = int(parts[0].split("\t")[1]) trials_dict[trial_idx]["gaze_targ_on_time_idx"] = trial_start_idx + idx elif "DISPLAY_SENTENCE" in l: # some .asc files seem to use this trials_dict[trial_idx]["gaze_targ_on_time"] = int(parts[0].split("\t")[1]) trials_dict[trial_idx]["gaze_targ_on_time_idx"] = trial_start_idx + idx elif "DISPLAY TEXT" in l: trials_dict[trial_idx]["text_start_idx"] = trial_start_idx + idx elif "REGION CHAR" in l: rg_idx = parts.index("CHAR") if len(parts[rg_idx:]) > 8: char = " " idx_correction = 1 elif len(parts[rg_idx:]) == 3: char = " " if "REGION CHAR" not in trial_lines[idx + 1]: parts = trial_lines[idx + 1].strip().split(" ") idx_correction = -rg_idx - 4 else: char = parts[rg_idx + 3] idx_correction = 0 try: char_dict = { "char": char, "char_xmin": float(parts[rg_idx + 4 + idx_correction]), "char_ymin": float(parts[rg_idx + 5 + idx_correction]), "char_xmax": float(parts[rg_idx + 6 + idx_correction]), "char_ymax": float(parts[rg_idx + 7 + idx_correction]), } char_dict["char_y_center"] = round( (char_dict["char_ymax"] - char_dict["char_ymin"]) / 2 + char_dict["char_ymin"], ndigits=2 ) char_dict["char_x_center"] = round( (char_dict["char_xmax"] - char_dict["char_xmin"]) / 2 + char_dict["char_xmin"], ndigits=2 ) chars_list.append(char_dict) except Exception as e: ic(f"char_dict creation failed for parts {parts}") ic(e) if start_trial_at_keyword == "SYNCTIME" and "synctime_time" in trials_dict[trial_idx]: trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx]["synctime_time"] trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx]["synctime"] elif start_trial_at_keyword == "GAZE TARGET ON" and "gaze_targ_on_time" in trials_dict[trial_idx]: trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx]["gaze_targ_on_time"] trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx]["gaze_targ_on_time_idx"] elif start_trial_at_keyword == "START": trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx]["start_time"] trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx]["start_idx"] elif f"{start_trial_at_keyword}_time" in trials_dict[trial_idx]: trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx][f"{start_trial_at_keyword}_time"] trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx][f"{start_trial_at_keyword}_line_idx"] else: trials_dict[trial_idx]["trial_start_time"] = trials_dict[trial_idx]["start_time"] trials_dict[trial_idx]["trial_start_idx"] = trials_dict[trial_idx]["start_idx"] if end_trial_at_keyword == "ENDBUTTON" and "endbutton_time" in trials_dict[trial_idx]: trials_dict[trial_idx]["trial_end_time"] = trials_dict[trial_idx]["endbutton_time"] trials_dict[trial_idx]["trial_end_idx"] = trials_dict[trial_idx]["endbutton_idx"] elif end_trial_at_keyword == "END" and "end_idx" in trials_dict[trial_idx]: trials_dict[trial_idx]["trial_end_time"] = trials_dict[trial_idx]["end_time"] trials_dict[trial_idx]["trial_end_idx"] = trials_dict[trial_idx]["end_idx"] elif end_trial_at_keyword == "KEYBOARD" and "keyboard_press_idx" in trials_dict[trial_idx]: trials_dict[trial_idx]["trial_end_idx"] = trials_dict[trial_idx]["keyboard_press_idx"] else: trials_dict[trial_idx]["trial_end_idx"] = trials_dict[trial_idx]["trial_result_idx"] if trials_dict[trial_idx]["trial_end_idx"] < trials_dict[trial_idx]["trial_start_idx"]: raise ValueError(f"trial_start_idx is larger than trial_end_idx for trial_idx {trial_idx}") if len(chars_list) > 0: line_ycoords = [] for idx in range(len(chars_list)): chars_list[idx]["char_y_center"] = round( (chars_list[idx]["char_ymax"] - chars_list[idx]["char_ymin"]) / 2 + chars_list[idx]["char_ymin"], ndigits=2, ) if chars_list[idx]["char_y_center"] not in line_ycoords: line_ycoords.append(chars_list[idx]["char_y_center"]) for idx in range(len(chars_list)): chars_list[idx]["assigned_line"] = line_ycoords.index(chars_list[idx]["char_y_center"]) letter_width_avg = np.mean( [x["char_xmax"] - x["char_xmin"] for x in chars_list if x["char_xmax"] > x["char_xmin"]] ) line_heights = [round(abs(x["char_ymax"] - x["char_ymin"]), 3) for x in chars_list] line_xcoords_all = [x["char_x_center"] for x in chars_list] line_xcoords_no_pad = np.unique(line_xcoords_all) line_ycoords_all = [x["char_y_center"] for x in chars_list] line_ycoords_no_pad = np.unique(line_ycoords_all) trials_dict[trial_idx]["x_char_unique"] = list(line_xcoords_no_pad) trials_dict[trial_idx]["y_char_unique"] = list(line_ycoords_no_pad) x_diff, y_diff = calc_xdiff_ydiff( line_xcoords_no_pad, line_ycoords_no_pad, line_heights, allow_multiple_values=False ) trials_dict[trial_idx]["x_diff"] = float(x_diff) trials_dict[trial_idx]["y_diff"] = float(y_diff) trials_dict[trial_idx]["num_char_lines"] = len(line_ycoords_no_pad) trials_dict[trial_idx]["letter_width_avg"] = letter_width_avg trials_dict[trial_idx]["line_heights"] = line_heights words_list_from_func, chars_list_reconstructed = add_words(chars_list) words_list = words_list_from_func if close_gap_between_words: # TODO this may need to change the "in_word" col for the chars_df for widx in range(1, len(words_list)): if words_list[widx]["assigned_line"] == words_list[widx - 1]["assigned_line"]: word_sep_half_width = (words_list[widx]["word_xmin"] - words_list[widx - 1]["word_xmax"]) / 2 words_list[widx - 1]["word_xmax"] = words_list[widx - 1]["word_xmax"] + word_sep_half_width words_list[widx]["word_xmin"] = words_list[widx]["word_xmin"] - word_sep_half_width else: chars_df = pd.DataFrame(chars_list_reconstructed) chars_df.loc[ chars_df["char"] == " ", ["in_word", "in_word_number", "num_letters_from_start_of_word"] ] = pd.NA chars_list_reconstructed = chars_df.to_dict("records") trials_dict[trial_idx]["words_list"] = words_list trials_dict[trial_idx]["chars_list"] = chars_list_reconstructed return trials_dict def get_lines_from_file(uploaded_file, asc_encoding="ISO-8859-15"): if isinstance(uploaded_file, str) or isinstance(uploaded_file, pl.Path): with open(uploaded_file, "r", encoding=asc_encoding) as f: lines = f.readlines() else: stringio = StringIO(uploaded_file.getvalue().decode(asc_encoding)) loaded_str = stringio.read() lines = loaded_str.split("\n") return lines def file_to_trials_and_lines( uploaded_file, asc_encoding: str = "ISO-8859-15", close_gap_between_words=True, paragraph_trials_only=True, uploaded_ias_files=[], trial_start_keyword="START", end_trial_at_keyword="END", ): lines = get_lines_from_file(uploaded_file, asc_encoding=asc_encoding) trials_dict = asc_lines_to_trials_by_trail_id( lines, paragraph_trials_only, uploaded_file, close_gap_between_words=close_gap_between_words, ias_files=uploaded_ias_files, start_trial_at_keyword=trial_start_keyword, end_trial_at_keyword=end_trial_at_keyword, ) if "paragraph_trials" not in trials_dict.keys() and "trial_is" in trials_dict[0].keys(): paragraph_trials = [] for k in range(trials_dict["max_trial_idx"]): if trials_dict[k]["trial_is"] == "paragraph": paragraph_trials.append(k) trials_dict["paragraph_trials"] = paragraph_trials enum = ( trials_dict["paragraph_trials"] if paragraph_trials_only and "paragraph_trials" in trials_dict.keys() else range(trials_dict["max_trial_idx"]) ) for k in enum: if "chars_list" in trials_dict[k].keys(): max_line = trials_dict[k]["chars_list"][-1]["assigned_line"] words_on_lines = {x: [] for x in range(max_line + 1)} [words_on_lines[x["assigned_line"]].append(x["char"]) for x in trials_dict[k]["chars_list"]] line_list = ["".join([s for s in v]) for idx, v in words_on_lines.items()] sentences_temp = "".join([x["char"] for x in trials_dict[k]["chars_list"]]) sentences = re.split(r"(? 0] trials_dict[k]["line_list"] = line_list trials_dict[k]["text"] = text trials_dict[k]["max_line"] = max_line return trials_dict, lines def discard_empty_str_from_list(l): return [x for x in l if len(x) > 0] def make_folders(gradio_temp_folder, gradio_temp_unzipped_folder, PLOTS_FOLDER): gradio_temp_folder.mkdir(exist_ok=True) gradio_temp_unzipped_folder.mkdir(exist_ok=True) PLOTS_FOLDER.mkdir(exist_ok=True) return 0 def plotly_plot_with_image( dffix, trial, algo_choice, saccade_df=None, to_plot_list=["Uncorrected Fixations", "Corrected Fixations", "Word boxes"], lines_in_plot="Uncorrected", scale_factor=0.5, font="DejaVu Sans Mono", box_annotations: list = None, ): mpl_fig, img_width, img_height = matplotlib_plot_df( dffix, trial, algo_choice, None, desired_dpi=300, fix_to_plot=[], stim_info_to_plot=to_plot_list, font=font, box_annotations=box_annotations, ) mpl_fig.savefig(TEMP_FIGURE_STIMULUS_PATH) plt.close(mpl_fig) if lines_in_plot == "Uncorrected": uncorrected_plot_mode = "markers+lines+text" else: uncorrected_plot_mode = "markers+text" if lines_in_plot == "Corrected": corrected_plot_mode = "markers+lines+text" else: corrected_plot_mode = "markers+text" if lines_in_plot == "Both": uncorrected_plot_mode = "markers+lines+text" corrected_plot_mode = "markers+lines+text" fig = go.Figure() fig.add_trace( go.Scatter( x=[0, img_width * scale_factor], y=[img_height * scale_factor, 0], mode="markers", marker_opacity=0, name="scale_helper", ) ) fig.update_xaxes(visible=False, range=[0, img_width * scale_factor]) fig.update_yaxes( visible=False, range=[img_height * scale_factor, 0], scaleanchor="x", ) if ( "Words" in to_plot_list or "Word boxes" in to_plot_list or "Character boxes" in to_plot_list or "Characters" in to_plot_list ): imsource = Image.open(str(TEMP_FIGURE_STIMULUS_PATH)) fig.add_layout_image( dict( x=0, sizex=img_width * scale_factor, y=0, sizey=img_height * scale_factor, xref="x", yref="y", opacity=1.0, layer="below", sizing="stretch", source=imsource, ) ) duration_scaled = dffix.duration - dffix.duration.min() duration_scaled = ((duration_scaled / duration_scaled.max()) - 0.5) * 3 duration = sigmoid(duration_scaled) * 50 * scale_factor if "Uncorrected Fixations" in to_plot_list: fig.add_trace( go.Scatter( x=dffix.x * scale_factor, y=dffix.y * scale_factor, mode=uncorrected_plot_mode, name="Raw fixations", marker=dict( color=COLORS[-1], symbol="arrow", size=duration.values, angleref="previous", ), line=dict(color=COLORS[-1], width=2 * scale_factor), text=np.arange(dffix.shape[0]), textposition="top right", textfont=dict( family="sans serif", size=23 * scale_factor, color=COLORS[-1], ), hovertext=[f"x:{x}, y:{y}, n:{num}" for x, y, num in zip(dffix.x, dffix[f"y"], range(dffix.shape[0]))], opacity=0.9, ) ) if "Corrected Fixations" in to_plot_list: if isinstance(algo_choice, list): algo_choices = algo_choice repeats = range(len(algo_choice)) else: algo_choices = [algo_choice] repeats = range(1) for algoIdx in repeats: algo_choice = algo_choices[algoIdx] if f"y_{algo_choice}" in dffix.columns: fig.add_trace( go.Scatter( x=dffix.x * scale_factor, y=dffix.loc[:, f"y_{algo_choice}"] * scale_factor, mode=corrected_plot_mode, name=algo_choice, marker=dict( color=COLORS[algoIdx], symbol="arrow", size=duration.values, angleref="previous", ), line=dict(color=COLORS[algoIdx], width=1.5 * scale_factor), text=np.arange(dffix.shape[0]), textposition="top center", textfont=dict( family="sans serif", size=22 * scale_factor, color=COLORS[algoIdx], ), hovertext=[ f"x:{x}, y:{y}, n:{num}" for x, y, num in zip(dffix.x, dffix[f"y_{algo_choice}"], range(dffix.shape[0])) ], opacity=0.9, ) ) if "Saccades" in to_plot_list: duration_scaled = saccade_df.duration - saccade_df.duration.min() duration_scaled = ((duration_scaled / duration_scaled.max()) - 0.5) * 3 duration = sigmoid(duration_scaled) * 65 * scale_factor starting_coordinates = [tuple(row * scale_factor) for row in saccade_df.loc[:, ["xs", "ys"]].values] ending_coordinates = [tuple(row * scale_factor) for row in saccade_df.loc[:, ["xe", "ye"]].values] for sidx, (start, end) in enumerate(zip(starting_coordinates, ending_coordinates)): if sidx == 0: show_legend = True else: show_legend = False fig.add_trace( go.Scatter( x=[start[0], end[0]], y=[start[1], end[1]], mode="markers+lines+text", line=dict(color=COLORS[-1], width=1.5 * scale_factor, dash="dash"), showlegend=show_legend, legendgroup="1", name="Saccades", text=sidx, textposition="top center", textfont=dict(family="sans serif", size=22 * scale_factor, color=COLORS[-1]), marker=dict( color=COLORS[-1], symbol="arrow", size=duration.values, angleref="previous", ), ) ) if "Saccades snapped to line" in to_plot_list: duration_scaled = saccade_df.duration - saccade_df.duration.min() duration_scaled = ((duration_scaled / duration_scaled.max()) - 0.5) * 3 duration = sigmoid(duration_scaled) * 65 * scale_factor if isinstance(algo_choice, list): algo_choices = algo_choice repeats = range(len(algo_choice)) else: algo_choices = [algo_choice] repeats = range(1) for algoIdx in repeats: algo_choice = algo_choices[algoIdx] if f"ys_{algo_choice}" in saccade_df.columns: starting_coordinates = [ tuple(row * scale_factor) for row in saccade_df.loc[:, ["xs", f"ys_{algo_choice}"]].values ] ending_coordinates = [ tuple(row * scale_factor) for row in saccade_df.loc[:, ["xe", f"ye_{algo_choice}"]].values ] for sidx, (start, end) in enumerate(zip(starting_coordinates, ending_coordinates)): if sidx == 0: show_legend = True else: show_legend = False fig.add_trace( go.Scatter( x=[start[0], end[0]], y=[start[1], end[1]], mode="markers+lines", line=dict(color=COLORS[algoIdx], width=1.5 * scale_factor, dash="dash"), showlegend=show_legend, legendgroup="2", text=sidx, textposition="top center", textfont=dict(family="sans serif", size=22 * scale_factor, color=COLORS[algoIdx]), name="Saccades snapped to line", marker=dict( color=COLORS[algoIdx], symbol="arrow", size=duration.values, angleref="previous", ), ) ) fig.update_layout( plot_bgcolor=None, width=img_width * scale_factor, height=img_height * scale_factor, margin={"l": 0, "r": 0, "t": 0, "b": 0}, legend=dict(orientation="h", yanchor="bottom", y=-0.1, xanchor="right", x=0.8), ) for trace in fig["data"]: if trace["name"] == "scale_helper": trace["showlegend"] = False return fig def plot_fix_measure( dffix, plot_choices, x_axis_selection, margin=dict(t=40, l=10, r=10, b=1), label_start="Fixation", ): y_label = f"{label_start} Feature" if x_axis_selection == "Index": num_datapoints = dffix.shape[0] x_label = f"{label_start} Number" x_nums = np.arange(num_datapoints) elif x_axis_selection == "Start Time": x_label = f"{label_start} Start Time" x_nums = dffix["start_time"] layout = dict( plot_bgcolor="white", autosize=True, margin=margin, xaxis=dict( title=x_label, linecolor="black", range=[x_nums.min() - 1, x_nums.max() + 1], showgrid=False, mirror="all", showline=True, ), yaxis=dict( title=y_label, side="left", linecolor="black", showgrid=False, mirror="all", showline=True, ), legend=dict(orientation="v", yanchor="middle", y=0.95, xanchor="left", x=1.05), ) fig = go.Figure(layout=layout) for pidx, plot_choice in enumerate(plot_choices): fig.add_trace( go.Scatter( x=x_nums, y=dffix.loc[:, plot_choice], mode="markers", name=plot_choice, marker_color=COLORS[pidx], marker_size=3, showlegend=True, ) ) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor="black") return fig def plot_y_corr(dffix, algo_choice, margin=dict(t=40, l=10, r=10, b=1)): num_datapoints = len(dffix.x) layout = dict( plot_bgcolor="white", autosize=True, margin=margin, xaxis=dict( title="Fixation Index", linecolor="black", range=[-1, num_datapoints + 1], showgrid=False, mirror="all", showline=True, ), yaxis=dict( title="y correction", side="left", linecolor="black", showgrid=False, mirror="all", showline=True, ), legend=dict(orientation="v", yanchor="middle", y=0.95, xanchor="left", x=1.05), ) if isinstance(dffix, dict): dffix = dffix["value"] algo_string = algo_choice[0] if isinstance(algo_choice, list) else algo_choice if f"y_{algo_string}_correction" not in dffix.columns: ic("No line-assignment column found in dataframe") return go.Figure(layout=layout) if isinstance(dffix, dict): dffix = dffix["value"] fig = go.Figure(layout=layout) if isinstance(algo_choice, list): algo_choices = algo_choice repeats = range(len(algo_choice)) else: algo_choices = [algo_choice] repeats = range(1) for algoIdx in repeats: algo_choice = algo_choices[algoIdx] fig.add_trace( go.Scatter( x=np.arange(num_datapoints), y=dffix.loc[:, f"y_{algo_choice}_correction"], mode="markers", name=f"{algo_choice} y correction", marker_color=COLORS[algoIdx], marker_size=3, showlegend=True, ) ) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor="black") return fig def download_example_ascs(EXAMPLES_FOLDER, EXAMPLES_ASC_ZIP_FILENAME, OSF_DOWNLAOD_LINK, EXAMPLES_FOLDER_PATH): if not os.path.isdir(EXAMPLES_FOLDER): os.mkdir(EXAMPLES_FOLDER) if not os.path.exists(EXAMPLES_ASC_ZIP_FILENAME): download_url(OSF_DOWNLAOD_LINK, EXAMPLES_ASC_ZIP_FILENAME) if os.path.exists(EXAMPLES_ASC_ZIP_FILENAME): if EXAMPLES_FOLDER_PATH.exists(): EXAMPLE_ASC_FILES = [x for x in EXAMPLES_FOLDER_PATH.glob("*.asc")] if len(EXAMPLE_ASC_FILES) != 4: try: with zipfile.ZipFile(EXAMPLES_ASC_ZIP_FILENAME, "r") as zip_ref: zip_ref.extractall(EXAMPLES_FOLDER) except Exception as e: ic(e) ic(f"Extracting {EXAMPLES_ASC_ZIP_FILENAME} failed") EXAMPLE_ASC_FILES = [x for x in EXAMPLES_FOLDER_PATH.glob("*.asc")] else: EXAMPLE_ASC_FILES = [] return EXAMPLE_ASC_FILES