buio's picture
Update app.py
cf63db7
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
import gradio as gr
import matplotlib.pyplot as plt
from huggingface_hub import from_pretrained_keras
# download the already pushed model
trained_models = [from_pretrained_keras("buio/attention_mil_classification")]
POSITIVE_CLASS = 1
BAG_COUNT = 1000
VAL_BAG_COUNT = 300
BAG_SIZE = 3
PLOT_SIZE = 1
ENSEMBLE_AVG_COUNT = 1
def create_bags(input_data, input_labels, positive_class, bag_count, instance_count):
# Set up bags.
bags = []
bag_labels = []
# Normalize input data.
input_data = np.divide(input_data, 255.0)
# Count positive samples.
count = 0
for _ in range(bag_count):
# Pick a fixed size random subset of samples.
index = np.random.choice(input_data.shape[0], instance_count, replace=False)
instances_data = input_data[index]
instances_labels = input_labels[index]
# By default, all bags are labeled as 0.
bag_label = 0
# Check if there is at least a positive class in the bag.
if positive_class in instances_labels:
# Positive bag will be labeled as 1.
bag_label = 1
count += 1
bags.append(instances_data)
bag_labels.append(np.array([bag_label]))
print(f"Positive bags: {count}")
print(f"Negative bags: {bag_count - count}")
return (list(np.swapaxes(bags, 0, 1)), np.array(bag_labels))
# Load the MNIST dataset.
(x_train, y_train), (x_val, y_val) = keras.datasets.mnist.load_data()
# Create validation data.
val_data, val_labels = create_bags(
x_val, y_val, POSITIVE_CLASS, VAL_BAG_COUNT, BAG_SIZE
)
def predict(data, labels, trained_models):
# Collect info per model.
models_predictions = []
models_attention_weights = []
models_losses = []
models_accuracies = []
for model in trained_models:
# Predict output classes on data.
predictions = model.predict(data)
models_predictions.append(predictions)
# Create intermediate model to get MIL attention layer weights.
intermediate_model = keras.Model(model.input, model.get_layer("alpha").output)
# Predict MIL attention layer weights.
intermediate_predictions = intermediate_model.predict(data)
attention_weights = np.squeeze(np.swapaxes(intermediate_predictions, 1, 0))
models_attention_weights.append(attention_weights)
model.compile(loss="sparse_categorical_crossentropy", metrics=["accuracy"])
loss, accuracy = model.evaluate(data, labels, verbose=0)
models_losses.append(loss)
models_accuracies.append(accuracy)
print(
f"The average loss and accuracy are {np.sum(models_losses, axis=0) / ENSEMBLE_AVG_COUNT:.2f}"
f" and {100 * np.sum(models_accuracies, axis=0) / ENSEMBLE_AVG_COUNT:.2f} % resp."
)
return (
np.sum(models_predictions, axis=0) / ENSEMBLE_AVG_COUNT,
np.sum(models_attention_weights, axis=0) / ENSEMBLE_AVG_COUNT,
)
def plot(data, labels, bag_class, predictions=None, attention_weights=None):
""""Utility for plotting bags and attention weights.
Args:
data: Input data that contains the bags of instances.
labels: The associated bag labels of the input data.
bag_class: String name of the desired bag class.
The options are: "positive" or "negative".
predictions: Class labels model predictions.
If you don't specify anything, ground truth labels will be used.
attention_weights: Attention weights for each instance within the input data.
If you don't specify anything, the values won't be displayed.
"""
labels = np.array(labels).reshape(-1)
if bag_class == "positive":
if predictions is not None:
labels = np.where(predictions.argmax(1) == 1)[0]
else:
labels = np.where(labels == 1)[0]
random_labels = np.random.choice(labels, PLOT_SIZE)
bags = np.array(data)[:, random_labels]
elif bag_class == "negative":
if predictions is not None:
labels = np.where(predictions.argmax(1) == 0)[0]
else:
labels = np.where(labels == 0)[0]
random_labels = np.random.choice(labels, PLOT_SIZE)
bags = np.array(data)[:, random_labels]
else:
print(f"There is no class {bag_class}")
return
print(f"The bag class label is {bag_class}")
for i in range(PLOT_SIZE):
figure = plt.figure(figsize=(8, 8)) #each image
print(f"Bag number: {labels[i]}")
for j in range(BAG_SIZE):
image = bags[j][i]
figure.add_subplot(1, BAG_SIZE, j + 1)
plt.grid(False)
plt.axis('off')
if attention_weights is not None:
plt.title(np.around(attention_weights[random_labels[i]][j], 2))
plt.imshow(image)
plt.show()
return figure
# Evaluate and predict classes and attention scores on validation data.
def predict_and_plot(class_):
print('WTF')
class_predictions, attention_params = predict(val_data, val_labels, trained_models)
PLOT_SIZE = 1
return plot(val_data, val_labels, class_,
predictions=class_predictions,
attention_weights=attention_params)
predict_and_plot('positive')
inputs = gr.Radio(choices=['positive','negative'])
outputs = gr.Plot(label='predicted bag')
#title = "Heart Disease Classification 🩺❤️"
#description = "Binary classification of structured data including numerical and categorical features."
#article = "Author: <a href=\"https://huggingface.co/buio\">Marco Buiani</a>. Based on the <a href=\"https://keras.io/examples/structured_data/structured_data_classification_from_scratch/\">keras example</a> by <a href=\"https://twitter.com/fchollet\">François Chollet</a> Model Link: https://huggingface.co/buio/structured-data-classification"
demo = gr.Interface(fn=predict_and_plot, inputs=inputs, outputs=outputs, allow_flagging='never')
demo.launch(debug=True)