File size: 10,213 Bytes
b416439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import cv2
import numpy as np
import torch
def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
left, top, right, bot = bbox
width = right - left
height = bot - top
if preserve_aspect:
width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
else:
width_increase = height_increase = increase_area
left = int(left - width_increase * width)
top = int(top - height_increase * height)
right = int(right + width_increase * width)
bot = int(bot + height_increase * height)
return (left, top, right, bot)
def get_valid_bboxes(bboxes, h, w):
left = max(bboxes[0], 0)
top = max(bboxes[1], 0)
right = min(bboxes[2], w)
bottom = min(bboxes[3], h)
return (left, top, right, bottom)
def align_crop_face_landmarks(img,
landmarks,
output_size,
transform_size=None,
enable_padding=True,
return_inverse_affine=False,
shrink_ratio=(1, 1)):
"""Align and crop face with landmarks.
The output_size and transform_size are based on width. The height is
adjusted based on shrink_ratio_h/shring_ration_w.
Modified from:
https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
Args:
img (Numpy array): Input image.
landmarks (Numpy array): 5 or 68 or 98 landmarks.
output_size (int): Output face size.
transform_size (ing): Transform size. Usually the four time of
output_size.
enable_padding (float): Default: True.
shrink_ratio (float | tuple[float] | list[float]): Shring the whole
face for height and width (crop larger area). Default: (1, 1).
Returns:
(Numpy array): Cropped face.
"""
lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5
if isinstance(shrink_ratio, (float, int)):
shrink_ratio = (shrink_ratio, shrink_ratio)
if transform_size is None:
transform_size = output_size * 4
# Parse landmarks
lm = np.array(landmarks)
if lm.shape[0] == 5 and lm_type == 'retinaface_5':
eye_left = lm[0]
eye_right = lm[1]
mouth_avg = (lm[3] + lm[4]) * 0.5
elif lm.shape[0] == 5 and lm_type == 'dlib_5':
lm_eye_left = lm[2:4]
lm_eye_right = lm[0:2]
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
mouth_avg = lm[4]
elif lm.shape[0] == 68:
lm_eye_left = lm[36:42]
lm_eye_right = lm[42:48]
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
mouth_avg = (lm[48] + lm[54]) * 0.5
elif lm.shape[0] == 98:
lm_eye_left = lm[60:68]
lm_eye_right = lm[68:76]
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
mouth_avg = (lm[76] + lm[82]) * 0.5
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_avg - eye_avg
# Get the oriented crop rectangle
# x: half width of the oriented crop rectangle
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
# norm with the hypotenuse: get the direction
x /= np.hypot(*x) # get the hypotenuse of a right triangle
rect_scale = 1 # TODO: you can edit it to get larger rect
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
# y: half height of the oriented crop rectangle
y = np.flipud(x) * [-1, 1]
x *= shrink_ratio[1] # width
y *= shrink_ratio[0] # height
# c: center
c = eye_avg + eye_to_mouth * 0.1
# quad: (left_top, left_bottom, right_bottom, right_top)
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
# qsize: side length of the square
qsize = np.hypot(*x) * 2
quad_ori = np.copy(quad)
# Shrink, for large face
# TODO: do we really need shrink
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
h, w = img.shape[0:2]
rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
quad /= shrink
qsize /= shrink
# Crop
h, w = img.shape[0:2]
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
img = img[crop[1]:crop[3], crop[0]:crop[2], :]
quad -= crop[0:2]
# Pad
# pad: (width_left, height_top, width_right, height_bottom)
h, w = img.shape[0:2]
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w = img.shape[0:2]
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1],
np.float32(h - 1 - y) / pad[3]))
blur = int(qsize * 0.02)
if blur % 2 == 0:
blur += 1
blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
img = img.astype('float32')
img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = np.clip(img, 0, 255) # float32, [0, 255]
quad += pad[:2]
# Transform use cv2
h_ratio = shrink_ratio[0] / shrink_ratio[1]
dst_h, dst_w = int(transform_size * h_ratio), transform_size
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
cropped_face = cv2.warpAffine(
img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray
if output_size < transform_size:
cropped_face = cv2.resize(
cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)
if return_inverse_affine:
dst_h, dst_w = int(output_size * h_ratio), output_size
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(
quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
inverse_affine = cv2.invertAffineTransform(affine_matrix)
else:
inverse_affine = None
return cropped_face, inverse_affine
def paste_face_back(img, face, inverse_affine):
h, w = img.shape[0:2]
face_h, face_w = face.shape[0:2]
inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
mask = np.ones((face_h, face_w, 3), dtype=np.float32)
inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
# remove the black borders
inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
inv_restored_remove_border = inv_mask_erosion * inv_restored
total_face_area = np.sum(inv_mask_erosion) // 3
# compute the fusion edge based on the area of face
w_edge = int(total_face_area**0.5) // 20
erosion_radius = w_edge * 2
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
blur_size = w_edge * 2
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
# float32, [0, 255]
return img
if __name__ == '__main__':
import os
from extras.facexlib.detection import init_detection_model
from extras.facexlib.utils.face_restoration_helper import get_largest_face
from extras.facexlib.visualization import visualize_detection
img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png'
img_name = os.splitext(os.path.basename(img_path))[0]
# initialize model
det_net = init_detection_model('retinaface_resnet50', half=False)
img_ori = cv2.imread(img_path)
h, w = img_ori.shape[0:2]
# if larger than 800, scale it
scale = max(h / 800, w / 800)
if scale > 1:
img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR)
with torch.no_grad():
bboxes = det_net.detect_faces(img, 0.97)
if scale > 1:
bboxes *= scale # the score is incorrect
bboxes = get_largest_face(bboxes, h, w)[0]
visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png')
landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)])
cropped_face, inverse_affine = align_crop_face_landmarks(
img_ori,
landmarks,
output_size=512,
transform_size=None,
enable_padding=True,
return_inverse_affine=True,
shrink_ratio=(1, 1))
cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face)
img = paste_face_back(img_ori, cropped_face, inverse_affine)
cv2.imwrite(f'tmp/{img_name}_back.png', img)
|