File size: 14,143 Bytes
b416439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import torch
from ldm_patched.ldm.modules.diffusionmodules.openaimodel import UNetModel
from ldm_patched.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from ldm_patched.ldm.modules.diffusionmodules.openaimodel import Timestep
import ldm_patched.modules.model_management
import ldm_patched.modules.conds
import ldm_patched.modules.ops
from enum import Enum
import contextlib
from . import utils

class ModelType(Enum):
    EPS = 1
    V_PREDICTION = 2
    V_PREDICTION_EDM = 3


from ldm_patched.modules.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM


def model_sampling(model_config, model_type):
    s = ModelSamplingDiscrete

    if model_type == ModelType.EPS:
        c = EPS
    elif model_type == ModelType.V_PREDICTION:
        c = V_PREDICTION
    elif model_type == ModelType.V_PREDICTION_EDM:
        c = V_PREDICTION
        s = ModelSamplingContinuousEDM

    class ModelSampling(s, c):
        pass

    return ModelSampling(model_config)


class BaseModel(torch.nn.Module):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__()

        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
        self.model_config = model_config
        self.manual_cast_dtype = model_config.manual_cast_dtype

        if not unet_config.get("disable_unet_model_creation", False):
            if self.manual_cast_dtype is not None:
                operations = ldm_patched.modules.ops.manual_cast
            else:
                operations = ldm_patched.modules.ops.disable_weight_init
            self.diffusion_model = UNetModel(**unet_config, device=device, operations=operations)
        self.model_type = model_type
        self.model_sampling = model_sampling(model_config, model_type)

        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
            self.adm_channels = 0
        self.inpaint_model = False
        print("model_type", model_type.name)
        print("UNet ADM Dimension", self.adm_channels)

    def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
        sigma = t
        xc = self.model_sampling.calculate_input(sigma, x)
        if c_concat is not None:
            xc = torch.cat([xc] + [c_concat], dim=1)

        context = c_crossattn
        dtype = self.get_dtype()

        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype

        xc = xc.to(dtype)
        t = self.model_sampling.timestep(t).float()
        context = context.to(dtype)
        extra_conds = {}
        for o in kwargs:
            extra = kwargs[o]
            if hasattr(extra, "to"):
                extra = extra.to(dtype)
            extra_conds[o] = extra

        model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
        return self.model_sampling.calculate_denoised(sigma, model_output, x)

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

    def encode_adm(self, **kwargs):
        return None

    def extra_conds(self, **kwargs):
        out = {}
        if self.inpaint_model:
            concat_keys = ("mask", "masked_image")
            cond_concat = []
            denoise_mask = kwargs.get("denoise_mask", None)
            latent_image = kwargs.get("latent_image", None)
            noise = kwargs.get("noise", None)
            device = kwargs["device"]

            def blank_inpaint_image_like(latent_image):
                blank_image = torch.ones_like(latent_image)
                # these are the values for "zero" in pixel space translated to latent space
                blank_image[:,0] *= 0.8223
                blank_image[:,1] *= -0.6876
                blank_image[:,2] *= 0.6364
                blank_image[:,3] *= 0.1380
                return blank_image

            for ck in concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask[:,:1].to(device))
                    elif ck == "masked_image":
                        cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            data = torch.cat(cond_concat, dim=1)
            out['c_concat'] = ldm_patched.modules.conds.CONDNoiseShape(data)
        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out['y'] = ldm_patched.modules.conds.CONDRegular(adm)
        return out

    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

        to_load = self.model_config.process_unet_state_dict(to_load)
        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            print("unet missing:", m)

        if len(u) > 0:
            print("unet unexpected:", u)
        del to_load
        return self

    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

    def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
        clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
        unet_sd = self.diffusion_model.state_dict()
        unet_state_dict = {}
        for k in unet_sd:
            unet_state_dict[k] = ldm_patched.modules.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)

        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
        vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
        if self.get_dtype() == torch.float16:
            clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
            vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)

        if self.model_type == ModelType.V_PREDICTION:
            unet_state_dict["v_pred"] = torch.tensor([])

        return {**unet_state_dict, **vae_state_dict, **clip_state_dict}

    def set_inpaint(self):
        self.inpaint_model = True

    def memory_required(self, input_shape):
        if ldm_patched.modules.model_management.xformers_enabled() or ldm_patched.modules.model_management.pytorch_attention_flash_attention():
            dtype = self.get_dtype()
            if self.manual_cast_dtype is not None:
                dtype = self.manual_cast_dtype
            #TODO: this needs to be tweaked
            area = input_shape[0] * input_shape[2] * input_shape[3]
            return (area * ldm_patched.modules.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
        else:
            #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
            area = input_shape[0] * input_shape[2] * input_shape[3]
            return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)


def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
    adm_inputs = []
    weights = []
    noise_aug = []
    for unclip_cond in unclip_conditioning:
        for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
            weight = unclip_cond["strength"]
            noise_augment = unclip_cond["noise_augmentation"]
            noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
            c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
            adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
            weights.append(weight)
            noise_aug.append(noise_augment)
            adm_inputs.append(adm_out)

    if len(noise_aug) > 1:
        adm_out = torch.stack(adm_inputs).sum(0)
        noise_augment = noise_augment_merge
        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
        c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
        adm_out = torch.cat((c_adm, noise_level_emb), 1)

    return adm_out

class SD21UNCLIP(BaseModel):
    def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]
        if unclip_conditioning is None:
            return torch.zeros((1, self.adm_channels))
        else:
            return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))

def sdxl_pooled(args, noise_augmentor):
    if "unclip_conditioning" in args:
        return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
    else:
        return args["pooled_output"]

class SDXLRefiner(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})

    def encode_adm(self, **kwargs):
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
        out.append(self.embedder(torch.Tensor([width])))
        out.append(self.embedder(torch.Tensor([crop_h])))
        out.append(self.embedder(torch.Tensor([crop_w])))
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})

    def encode_adm(self, **kwargs):
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
        out.append(self.embedder(torch.Tensor([width])))
        out.append(self.embedder(torch.Tensor([crop_h])))
        out.append(self.embedder(torch.Tensor([crop_w])))
        out.append(self.embedder(torch.Tensor([target_height])))
        out.append(self.embedder(torch.Tensor([target_width])))
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SVD_img2vid(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)

    def encode_adm(self, **kwargs):
        fps_id = kwargs.get("fps", 6) - 1
        motion_bucket_id = kwargs.get("motion_bucket_id", 127)
        augmentation = kwargs.get("augmentation_level", 0)

        out = []
        out.append(self.embedder(torch.Tensor([fps_id])))
        out.append(self.embedder(torch.Tensor([motion_bucket_id])))
        out.append(self.embedder(torch.Tensor([augmentation])))

        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
        return flat

    def extra_conds(self, **kwargs):
        out = {}
        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out['y'] = ldm_patched.modules.conds.CONDRegular(adm)

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)
        device = kwargs["device"]

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])

        out['c_concat'] = ldm_patched.modules.conds.CONDNoiseShape(latent_image)

        if "time_conditioning" in kwargs:
            out["time_context"] = ldm_patched.modules.conds.CONDCrossAttn(kwargs["time_conditioning"])

        out['image_only_indicator'] = ldm_patched.modules.conds.CONDConstant(torch.zeros((1,), device=device))
        out['num_video_frames'] = ldm_patched.modules.conds.CONDConstant(noise.shape[0])
        return out