File size: 2,300 Bytes
b416439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: layernorm.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: [email protected]
# Last Modified:  Thursday, 20th April 2023 9:28:20 am
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################

import torch
import torch.nn as nn


class LayerNormFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, weight, bias, eps):
        ctx.eps = eps
        N, C, H, W = x.size()
        mu = x.mean(1, keepdim=True)
        var = (x - mu).pow(2).mean(1, keepdim=True)
        y = (x - mu) / (var + eps).sqrt()
        ctx.save_for_backward(y, var, weight)
        y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
        return y

    @staticmethod
    def backward(ctx, grad_output):
        eps = ctx.eps

        N, C, H, W = grad_output.size()
        y, var, weight = ctx.saved_variables
        g = grad_output * weight.view(1, C, 1, 1)
        mean_g = g.mean(dim=1, keepdim=True)

        mean_gy = (g * y).mean(dim=1, keepdim=True)
        gx = 1.0 / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
        return (
            gx,
            (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0),
            grad_output.sum(dim=3).sum(dim=2).sum(dim=0),
            None,
        )


class LayerNorm2d(nn.Module):
    def __init__(self, channels, eps=1e-6):
        super(LayerNorm2d, self).__init__()
        self.register_parameter("weight", nn.Parameter(torch.ones(channels)))
        self.register_parameter("bias", nn.Parameter(torch.zeros(channels)))
        self.eps = eps

    def forward(self, x):
        return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)


class GRN(nn.Module):
    """GRN (Global Response Normalization) layer"""

    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, dim, 1, 1))
        self.beta = nn.Parameter(torch.zeros(1, dim, 1, 1))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(2, 3), keepdim=True)
        Nx = Gx / (Gx.mean(dim=1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x