File size: 4,934 Bytes
b416439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# From https://github.com/Koushik0901/Swift-SRGAN/blob/master/swift-srgan/models.py

import torch
from torch import nn


class SeperableConv2d(nn.Module):
    def __init__(
        self, in_channels, out_channels, kernel_size, stride=1, padding=1, bias=True
    ):
        super(SeperableConv2d, self).__init__()
        self.depthwise = nn.Conv2d(
            in_channels,
            in_channels,
            kernel_size=kernel_size,
            stride=stride,
            groups=in_channels,
            bias=bias,
            padding=padding,
        )
        self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias)

    def forward(self, x):
        return self.pointwise(self.depthwise(x))


class ConvBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        use_act=True,
        use_bn=True,
        discriminator=False,
        **kwargs,
    ):
        super(ConvBlock, self).__init__()

        self.use_act = use_act
        self.cnn = SeperableConv2d(in_channels, out_channels, **kwargs, bias=not use_bn)
        self.bn = nn.BatchNorm2d(out_channels) if use_bn else nn.Identity()
        self.act = (
            nn.LeakyReLU(0.2, inplace=True)
            if discriminator
            else nn.PReLU(num_parameters=out_channels)
        )

    def forward(self, x):
        return self.act(self.bn(self.cnn(x))) if self.use_act else self.bn(self.cnn(x))


class UpsampleBlock(nn.Module):
    def __init__(self, in_channels, scale_factor):
        super(UpsampleBlock, self).__init__()

        self.conv = SeperableConv2d(
            in_channels,
            in_channels * scale_factor**2,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        self.ps = nn.PixelShuffle(
            scale_factor
        )  # (in_channels * 4, H, W) -> (in_channels, H*2, W*2)
        self.act = nn.PReLU(num_parameters=in_channels)

    def forward(self, x):
        return self.act(self.ps(self.conv(x)))


class ResidualBlock(nn.Module):
    def __init__(self, in_channels):
        super(ResidualBlock, self).__init__()

        self.block1 = ConvBlock(
            in_channels, in_channels, kernel_size=3, stride=1, padding=1
        )
        self.block2 = ConvBlock(
            in_channels, in_channels, kernel_size=3, stride=1, padding=1, use_act=False
        )

    def forward(self, x):
        out = self.block1(x)
        out = self.block2(out)
        return out + x


class Generator(nn.Module):
    """Swift-SRGAN Generator
    Args:
        in_channels (int): number of input image channels.
        num_channels (int): number of hidden channels.
        num_blocks (int): number of residual blocks.
        upscale_factor (int): factor to upscale the image [2x, 4x, 8x].
    Returns:
        torch.Tensor: super resolution image
    """

    def __init__(
        self,
        state_dict,
    ):
        super(Generator, self).__init__()
        self.model_arch = "Swift-SRGAN"
        self.sub_type = "SR"
        self.state = state_dict
        if "model" in self.state:
            self.state = self.state["model"]

        self.in_nc: int = self.state["initial.cnn.depthwise.weight"].shape[0]
        self.out_nc: int = self.state["final_conv.pointwise.weight"].shape[0]
        self.num_filters: int = self.state["initial.cnn.pointwise.weight"].shape[0]
        self.num_blocks = len(
            set([x.split(".")[1] for x in self.state.keys() if "residual" in x])
        )
        self.scale: int = 2 ** len(
            set([x.split(".")[1] for x in self.state.keys() if "upsampler" in x])
        )

        in_channels = self.in_nc
        num_channels = self.num_filters
        num_blocks = self.num_blocks
        upscale_factor = self.scale

        self.supports_fp16 = True
        self.supports_bfp16 = True
        self.min_size_restriction = None

        self.initial = ConvBlock(
            in_channels, num_channels, kernel_size=9, stride=1, padding=4, use_bn=False
        )
        self.residual = nn.Sequential(
            *[ResidualBlock(num_channels) for _ in range(num_blocks)]
        )
        self.convblock = ConvBlock(
            num_channels,
            num_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            use_act=False,
        )
        self.upsampler = nn.Sequential(
            *[
                UpsampleBlock(num_channels, scale_factor=2)
                for _ in range(upscale_factor // 2)
            ]
        )
        self.final_conv = SeperableConv2d(
            num_channels, in_channels, kernel_size=9, stride=1, padding=4
        )

        self.load_state_dict(self.state, strict=False)

    def forward(self, x):
        initial = self.initial(x)
        x = self.residual(initial)
        x = self.convblock(x) + initial
        x = self.upsampler(x)
        return (torch.tanh(self.final_conv(x)) + 1) / 2