File size: 14,193 Bytes
b416439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from __future__ import annotations

from collections import OrderedDict
try:
    from typing import Literal
except ImportError:
    from typing_extensions import Literal

import torch
import torch.nn as nn

####################
# Basic blocks
####################


def act(act_type: str, inplace=True, neg_slope=0.2, n_prelu=1):
    # helper selecting activation
    # neg_slope: for leakyrelu and init of prelu
    # n_prelu: for p_relu num_parameters
    act_type = act_type.lower()
    if act_type == "relu":
        layer = nn.ReLU(inplace)
    elif act_type == "leakyrelu":
        layer = nn.LeakyReLU(neg_slope, inplace)
    elif act_type == "prelu":
        layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
    else:
        raise NotImplementedError(
            "activation layer [{:s}] is not found".format(act_type)
        )
    return layer


def norm(norm_type: str, nc: int):
    # helper selecting normalization layer
    norm_type = norm_type.lower()
    if norm_type == "batch":
        layer = nn.BatchNorm2d(nc, affine=True)
    elif norm_type == "instance":
        layer = nn.InstanceNorm2d(nc, affine=False)
    else:
        raise NotImplementedError(
            "normalization layer [{:s}] is not found".format(norm_type)
        )
    return layer


def pad(pad_type: str, padding):
    # helper selecting padding layer
    # if padding is 'zero', do by conv layers
    pad_type = pad_type.lower()
    if padding == 0:
        return None
    if pad_type == "reflect":
        layer = nn.ReflectionPad2d(padding)
    elif pad_type == "replicate":
        layer = nn.ReplicationPad2d(padding)
    else:
        raise NotImplementedError(
            "padding layer [{:s}] is not implemented".format(pad_type)
        )
    return layer


def get_valid_padding(kernel_size, dilation):
    kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
    padding = (kernel_size - 1) // 2
    return padding


class ConcatBlock(nn.Module):
    # Concat the output of a submodule to its input
    def __init__(self, submodule):
        super(ConcatBlock, self).__init__()
        self.sub = submodule

    def forward(self, x):
        output = torch.cat((x, self.sub(x)), dim=1)
        return output

    def __repr__(self):
        tmpstr = "Identity .. \n|"
        modstr = self.sub.__repr__().replace("\n", "\n|")
        tmpstr = tmpstr + modstr
        return tmpstr


class ShortcutBlock(nn.Module):
    # Elementwise sum the output of a submodule to its input
    def __init__(self, submodule):
        super(ShortcutBlock, self).__init__()
        self.sub = submodule

    def forward(self, x):
        output = x + self.sub(x)
        return output

    def __repr__(self):
        tmpstr = "Identity + \n|"
        modstr = self.sub.__repr__().replace("\n", "\n|")
        tmpstr = tmpstr + modstr
        return tmpstr


class ShortcutBlockSPSR(nn.Module):
    # Elementwise sum the output of a submodule to its input
    def __init__(self, submodule):
        super(ShortcutBlockSPSR, self).__init__()
        self.sub = submodule

    def forward(self, x):
        return x, self.sub

    def __repr__(self):
        tmpstr = "Identity + \n|"
        modstr = self.sub.__repr__().replace("\n", "\n|")
        tmpstr = tmpstr + modstr
        return tmpstr


def sequential(*args):
    # Flatten Sequential. It unwraps nn.Sequential.
    if len(args) == 1:
        if isinstance(args[0], OrderedDict):
            raise NotImplementedError("sequential does not support OrderedDict input.")
        return args[0]  # No sequential is needed.
    modules = []
    for module in args:
        if isinstance(module, nn.Sequential):
            for submodule in module.children():
                modules.append(submodule)
        elif isinstance(module, nn.Module):
            modules.append(module)
    return nn.Sequential(*modules)


ConvMode = Literal["CNA", "NAC", "CNAC"]


# 2x2x2 Conv Block
def conv_block_2c2(
    in_nc,
    out_nc,
    act_type="relu",
):
    return sequential(
        nn.Conv2d(in_nc, out_nc, kernel_size=2, padding=1),
        nn.Conv2d(out_nc, out_nc, kernel_size=2, padding=0),
        act(act_type) if act_type else None,
    )


def conv_block(
    in_nc: int,
    out_nc: int,
    kernel_size,
    stride=1,
    dilation=1,
    groups=1,
    bias=True,
    pad_type="zero",
    norm_type: str | None = None,
    act_type: str | None = "relu",
    mode: ConvMode = "CNA",
    c2x2=False,
):
    """
    Conv layer with padding, normalization, activation
    mode: CNA --> Conv -> Norm -> Act
        NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
    """

    if c2x2:
        return conv_block_2c2(in_nc, out_nc, act_type=act_type)

    assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode)
    padding = get_valid_padding(kernel_size, dilation)
    p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
    padding = padding if pad_type == "zero" else 0

    c = nn.Conv2d(
        in_nc,
        out_nc,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        bias=bias,
        groups=groups,
    )
    a = act(act_type) if act_type else None
    if mode in ("CNA", "CNAC"):
        n = norm(norm_type, out_nc) if norm_type else None
        return sequential(p, c, n, a)
    elif mode == "NAC":
        if norm_type is None and act_type is not None:
            a = act(act_type, inplace=False)
            # Important!
            # input----ReLU(inplace)----Conv--+----output
            #        |________________________|
            # inplace ReLU will modify the input, therefore wrong output
        n = norm(norm_type, in_nc) if norm_type else None
        return sequential(n, a, p, c)
    else:
        assert False, f"Invalid conv mode {mode}"


####################
# Useful blocks
####################


class ResNetBlock(nn.Module):
    """
    ResNet Block, 3-3 style
    with extra residual scaling used in EDSR
    (Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
    """

    def __init__(
        self,
        in_nc,
        mid_nc,
        out_nc,
        kernel_size=3,
        stride=1,
        dilation=1,
        groups=1,
        bias=True,
        pad_type="zero",
        norm_type=None,
        act_type="relu",
        mode: ConvMode = "CNA",
        res_scale=1,
    ):
        super(ResNetBlock, self).__init__()
        conv0 = conv_block(
            in_nc,
            mid_nc,
            kernel_size,
            stride,
            dilation,
            groups,
            bias,
            pad_type,
            norm_type,
            act_type,
            mode,
        )
        if mode == "CNA":
            act_type = None
        if mode == "CNAC":  # Residual path: |-CNAC-|
            act_type = None
            norm_type = None
        conv1 = conv_block(
            mid_nc,
            out_nc,
            kernel_size,
            stride,
            dilation,
            groups,
            bias,
            pad_type,
            norm_type,
            act_type,
            mode,
        )
        # if in_nc != out_nc:
        #     self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
        #         None, None)
        #     print('Need a projecter in ResNetBlock.')
        # else:
        #     self.project = lambda x:x
        self.res = sequential(conv0, conv1)
        self.res_scale = res_scale

    def forward(self, x):
        res = self.res(x).mul(self.res_scale)
        return x + res


class RRDB(nn.Module):
    """
    Residual in Residual Dense Block
    (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
    """

    def __init__(
        self,
        nf,
        kernel_size=3,
        gc=32,
        stride=1,
        bias: bool = True,
        pad_type="zero",
        norm_type=None,
        act_type="leakyrelu",
        mode: ConvMode = "CNA",
        _convtype="Conv2D",
        _spectral_norm=False,
        plus=False,
        c2x2=False,
    ):
        super(RRDB, self).__init__()
        self.RDB1 = ResidualDenseBlock_5C(
            nf,
            kernel_size,
            gc,
            stride,
            bias,
            pad_type,
            norm_type,
            act_type,
            mode,
            plus=plus,
            c2x2=c2x2,
        )
        self.RDB2 = ResidualDenseBlock_5C(
            nf,
            kernel_size,
            gc,
            stride,
            bias,
            pad_type,
            norm_type,
            act_type,
            mode,
            plus=plus,
            c2x2=c2x2,
        )
        self.RDB3 = ResidualDenseBlock_5C(
            nf,
            kernel_size,
            gc,
            stride,
            bias,
            pad_type,
            norm_type,
            act_type,
            mode,
            plus=plus,
            c2x2=c2x2,
        )

    def forward(self, x):
        out = self.RDB1(x)
        out = self.RDB2(out)
        out = self.RDB3(out)
        return out * 0.2 + x


class ResidualDenseBlock_5C(nn.Module):
    """
    Residual Dense Block
    style: 5 convs
    The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
    Modified options that can be used:
        - "Partial Convolution based Padding" arXiv:1811.11718
        - "Spectral normalization" arXiv:1802.05957
        - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
            {Rakotonirina} and A. {Rasoanaivo}

    Args:
        nf (int): Channel number of intermediate features (num_feat).
        gc (int): Channels for each growth (num_grow_ch: growth channel,
            i.e. intermediate channels).
        convtype (str): the type of convolution to use. Default: 'Conv2D'
        gaussian_noise (bool): enable the ESRGAN+ gaussian noise (no new
            trainable parameters)
        plus (bool): enable the additional residual paths from ESRGAN+
            (adds trainable parameters)
    """

    def __init__(
        self,
        nf=64,
        kernel_size=3,
        gc=32,
        stride=1,
        bias: bool = True,
        pad_type="zero",
        norm_type=None,
        act_type="leakyrelu",
        mode: ConvMode = "CNA",
        plus=False,
        c2x2=False,
    ):
        super(ResidualDenseBlock_5C, self).__init__()

        ## +
        self.conv1x1 = conv1x1(nf, gc) if plus else None
        ## +

        self.conv1 = conv_block(
            nf,
            gc,
            kernel_size,
            stride,
            bias=bias,
            pad_type=pad_type,
            norm_type=norm_type,
            act_type=act_type,
            mode=mode,
            c2x2=c2x2,
        )
        self.conv2 = conv_block(
            nf + gc,
            gc,
            kernel_size,
            stride,
            bias=bias,
            pad_type=pad_type,
            norm_type=norm_type,
            act_type=act_type,
            mode=mode,
            c2x2=c2x2,
        )
        self.conv3 = conv_block(
            nf + 2 * gc,
            gc,
            kernel_size,
            stride,
            bias=bias,
            pad_type=pad_type,
            norm_type=norm_type,
            act_type=act_type,
            mode=mode,
            c2x2=c2x2,
        )
        self.conv4 = conv_block(
            nf + 3 * gc,
            gc,
            kernel_size,
            stride,
            bias=bias,
            pad_type=pad_type,
            norm_type=norm_type,
            act_type=act_type,
            mode=mode,
            c2x2=c2x2,
        )
        if mode == "CNA":
            last_act = None
        else:
            last_act = act_type
        self.conv5 = conv_block(
            nf + 4 * gc,
            nf,
            3,
            stride,
            bias=bias,
            pad_type=pad_type,
            norm_type=norm_type,
            act_type=last_act,
            mode=mode,
            c2x2=c2x2,
        )

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv2(torch.cat((x, x1), 1))
        if self.conv1x1:
            # pylint: disable=not-callable
            x2 = x2 + self.conv1x1(x)  # +
        x3 = self.conv3(torch.cat((x, x1, x2), 1))
        x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
        if self.conv1x1:
            x4 = x4 + x2  # +
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
        return x5 * 0.2 + x


def conv1x1(in_planes, out_planes, stride=1):
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


####################
# Upsampler
####################


def pixelshuffle_block(
    in_nc: int,
    out_nc: int,
    upscale_factor=2,
    kernel_size=3,
    stride=1,
    bias=True,
    pad_type="zero",
    norm_type: str | None = None,
    act_type="relu",
):
    """
    Pixel shuffle layer
    (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
    Neural Network, CVPR17)
    """
    conv = conv_block(
        in_nc,
        out_nc * (upscale_factor**2),
        kernel_size,
        stride,
        bias=bias,
        pad_type=pad_type,
        norm_type=None,
        act_type=None,
    )
    pixel_shuffle = nn.PixelShuffle(upscale_factor)

    n = norm(norm_type, out_nc) if norm_type else None
    a = act(act_type) if act_type else None
    return sequential(conv, pixel_shuffle, n, a)


def upconv_block(
    in_nc: int,
    out_nc: int,
    upscale_factor=2,
    kernel_size=3,
    stride=1,
    bias=True,
    pad_type="zero",
    norm_type: str | None = None,
    act_type="relu",
    mode="nearest",
    c2x2=False,
):
    # Up conv
    # described in https://distill.pub/2016/deconv-checkerboard/
    upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
    conv = conv_block(
        in_nc,
        out_nc,
        kernel_size,
        stride,
        bias=bias,
        pad_type=pad_type,
        norm_type=norm_type,
        act_type=act_type,
        c2x2=c2x2,
    )
    return sequential(upsample, conv)