File size: 26,761 Bytes
b416439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
"""
Modified from https://github.com/sczhou/CodeFormer
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
This verison of the arch specifically was gathered from an old version of GFPGAN. If this is a problem, please contact me.
"""
import math
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
import logging as logger
from torch import Tensor


class VectorQuantizer(nn.Module):
    def __init__(self, codebook_size, emb_dim, beta):
        super(VectorQuantizer, self).__init__()
        self.codebook_size = codebook_size  # number of embeddings
        self.emb_dim = emb_dim  # dimension of embedding
        self.beta = beta  # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
        self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
        self.embedding.weight.data.uniform_(
            -1.0 / self.codebook_size, 1.0 / self.codebook_size
        )

    def forward(self, z):
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
        z_flattened = z.view(-1, self.emb_dim)

        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        d = (
            (z_flattened**2).sum(dim=1, keepdim=True)
            + (self.embedding.weight**2).sum(1)
            - 2 * torch.matmul(z_flattened, self.embedding.weight.t())
        )

        mean_distance = torch.mean(d)
        # find closest encodings
        # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
        min_encoding_scores, min_encoding_indices = torch.topk(
            d, 1, dim=1, largest=False
        )
        # [0-1], higher score, higher confidence
        min_encoding_scores = torch.exp(-min_encoding_scores / 10)

        min_encodings = torch.zeros(
            min_encoding_indices.shape[0], self.codebook_size
        ).to(z)
        min_encodings.scatter_(1, min_encoding_indices, 1)

        # get quantized latent vectors
        z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
        # compute loss for embedding
        loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean(
            (z_q - z.detach()) ** 2
        )
        # preserve gradients
        z_q = z + (z_q - z).detach()

        # perplexity
        e_mean = torch.mean(min_encodings, dim=0)
        perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return (
            z_q,
            loss,
            {
                "perplexity": perplexity,
                "min_encodings": min_encodings,
                "min_encoding_indices": min_encoding_indices,
                "min_encoding_scores": min_encoding_scores,
                "mean_distance": mean_distance,
            },
        )

    def get_codebook_feat(self, indices, shape):
        # input indices: batch*token_num -> (batch*token_num)*1
        # shape: batch, height, width, channel
        indices = indices.view(-1, 1)
        min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
        min_encodings.scatter_(1, indices, 1)
        # get quantized latent vectors
        z_q = torch.matmul(min_encodings.float(), self.embedding.weight)

        if shape is not None:  # reshape back to match original input shape
            z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()

        return z_q


class GumbelQuantizer(nn.Module):
    def __init__(
        self,
        codebook_size,
        emb_dim,
        num_hiddens,
        straight_through=False,
        kl_weight=5e-4,
        temp_init=1.0,
    ):
        super().__init__()
        self.codebook_size = codebook_size  # number of embeddings
        self.emb_dim = emb_dim  # dimension of embedding
        self.straight_through = straight_through
        self.temperature = temp_init
        self.kl_weight = kl_weight
        self.proj = nn.Conv2d(
            num_hiddens, codebook_size, 1
        )  # projects last encoder layer to quantized logits
        self.embed = nn.Embedding(codebook_size, emb_dim)

    def forward(self, z):
        hard = self.straight_through if self.training else True

        logits = self.proj(z)

        soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)

        z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)

        # + kl divergence to the prior loss
        qy = F.softmax(logits, dim=1)
        diff = (
            self.kl_weight
            * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
        )
        min_encoding_indices = soft_one_hot.argmax(dim=1)

        return z_q, diff, {"min_encoding_indices": min_encoding_indices}


class Downsample(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.conv = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=3, stride=2, padding=0
        )

    def forward(self, x):
        pad = (0, 1, 0, 1)
        x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
        x = self.conv(x)
        return x


class Upsample(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.conv = nn.Conv2d(
            in_channels, in_channels, kernel_size=3, stride=1, padding=1
        )

    def forward(self, x):
        x = F.interpolate(x, scale_factor=2.0, mode="nearest")
        x = self.conv(x)

        return x


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = normalize(in_channels)
        self.q = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.k = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.v = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.proj_out = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q.shape
        q = q.reshape(b, c, h * w)
        q = q.permute(0, 2, 1)
        k = k.reshape(b, c, h * w)
        w_ = torch.bmm(q, k)
        w_ = w_ * (int(c) ** (-0.5))
        w_ = F.softmax(w_, dim=2)

        # attend to values
        v = v.reshape(b, c, h * w)
        w_ = w_.permute(0, 2, 1)
        h_ = torch.bmm(v, w_)
        h_ = h_.reshape(b, c, h, w)

        h_ = self.proj_out(h_)

        return x + h_


class Encoder(nn.Module):
    def __init__(
        self,
        in_channels,
        nf,
        out_channels,
        ch_mult,
        num_res_blocks,
        resolution,
        attn_resolutions,
    ):
        super().__init__()
        self.nf = nf
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.attn_resolutions = attn_resolutions

        curr_res = self.resolution
        in_ch_mult = (1,) + tuple(ch_mult)

        blocks = []
        # initial convultion
        blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))

        # residual and downsampling blocks, with attention on smaller res (16x16)
        for i in range(self.num_resolutions):
            block_in_ch = nf * in_ch_mult[i]
            block_out_ch = nf * ch_mult[i]
            for _ in range(self.num_res_blocks):
                blocks.append(ResBlock(block_in_ch, block_out_ch))
                block_in_ch = block_out_ch
                if curr_res in attn_resolutions:
                    blocks.append(AttnBlock(block_in_ch))

            if i != self.num_resolutions - 1:
                blocks.append(Downsample(block_in_ch))
                curr_res = curr_res // 2

        # non-local attention block
        blocks.append(ResBlock(block_in_ch, block_in_ch))  # type: ignore
        blocks.append(AttnBlock(block_in_ch))  # type: ignore
        blocks.append(ResBlock(block_in_ch, block_in_ch))  # type: ignore

        # normalise and convert to latent size
        blocks.append(normalize(block_in_ch))  # type: ignore
        blocks.append(
            nn.Conv2d(block_in_ch, out_channels, kernel_size=3, stride=1, padding=1)  # type: ignore
        )
        self.blocks = nn.ModuleList(blocks)

    def forward(self, x):
        for block in self.blocks:
            x = block(x)

        return x


class Generator(nn.Module):
    def __init__(self, nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim):
        super().__init__()
        self.nf = nf
        self.ch_mult = ch_mult
        self.num_resolutions = len(self.ch_mult)
        self.num_res_blocks = res_blocks
        self.resolution = img_size
        self.attn_resolutions = attn_resolutions
        self.in_channels = emb_dim
        self.out_channels = 3
        block_in_ch = self.nf * self.ch_mult[-1]
        curr_res = self.resolution // 2 ** (self.num_resolutions - 1)

        blocks = []
        # initial conv
        blocks.append(
            nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)
        )

        # non-local attention block
        blocks.append(ResBlock(block_in_ch, block_in_ch))
        blocks.append(AttnBlock(block_in_ch))
        blocks.append(ResBlock(block_in_ch, block_in_ch))

        for i in reversed(range(self.num_resolutions)):
            block_out_ch = self.nf * self.ch_mult[i]

            for _ in range(self.num_res_blocks):
                blocks.append(ResBlock(block_in_ch, block_out_ch))
                block_in_ch = block_out_ch

                if curr_res in self.attn_resolutions:
                    blocks.append(AttnBlock(block_in_ch))

            if i != 0:
                blocks.append(Upsample(block_in_ch))
                curr_res = curr_res * 2

        blocks.append(normalize(block_in_ch))
        blocks.append(
            nn.Conv2d(
                block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1
            )
        )

        self.blocks = nn.ModuleList(blocks)

    def forward(self, x):
        for block in self.blocks:
            x = block(x)

        return x


class VQAutoEncoder(nn.Module):
    def __init__(
        self,
        img_size,
        nf,
        ch_mult,
        quantizer="nearest",
        res_blocks=2,
        attn_resolutions=[16],
        codebook_size=1024,
        emb_dim=256,
        beta=0.25,
        gumbel_straight_through=False,
        gumbel_kl_weight=1e-8,
        model_path=None,
    ):
        super().__init__()
        self.in_channels = 3
        self.nf = nf
        self.n_blocks = res_blocks
        self.codebook_size = codebook_size
        self.embed_dim = emb_dim
        self.ch_mult = ch_mult
        self.resolution = img_size
        self.attn_resolutions = attn_resolutions
        self.quantizer_type = quantizer
        self.encoder = Encoder(
            self.in_channels,
            self.nf,
            self.embed_dim,
            self.ch_mult,
            self.n_blocks,
            self.resolution,
            self.attn_resolutions,
        )
        if self.quantizer_type == "nearest":
            self.beta = beta  # 0.25
            self.quantize = VectorQuantizer(
                self.codebook_size, self.embed_dim, self.beta
            )
        elif self.quantizer_type == "gumbel":
            self.gumbel_num_hiddens = emb_dim
            self.straight_through = gumbel_straight_through
            self.kl_weight = gumbel_kl_weight
            self.quantize = GumbelQuantizer(
                self.codebook_size,
                self.embed_dim,
                self.gumbel_num_hiddens,
                self.straight_through,
                self.kl_weight,
            )
        self.generator = Generator(
            nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim
        )

        if model_path is not None:
            chkpt = torch.load(model_path, map_location="cpu")
            if "params_ema" in chkpt:
                self.load_state_dict(
                    torch.load(model_path, map_location="cpu")["params_ema"]
                )
                logger.info(f"vqgan is loaded from: {model_path} [params_ema]")
            elif "params" in chkpt:
                self.load_state_dict(
                    torch.load(model_path, map_location="cpu")["params"]
                )
                logger.info(f"vqgan is loaded from: {model_path} [params]")
            else:
                raise ValueError("Wrong params!")

    def forward(self, x):
        x = self.encoder(x)
        quant, codebook_loss, quant_stats = self.quantize(x)
        x = self.generator(quant)
        return x, codebook_loss, quant_stats


def calc_mean_std(feat, eps=1e-5):
    """Calculate mean and std for adaptive_instance_normalization.
    Args:
        feat (Tensor): 4D tensor.
        eps (float): A small value added to the variance to avoid
            divide-by-zero. Default: 1e-5.
    """
    size = feat.size()
    assert len(size) == 4, "The input feature should be 4D tensor."
    b, c = size[:2]
    feat_var = feat.view(b, c, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(b, c, 1, 1)
    feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
    return feat_mean, feat_std


def adaptive_instance_normalization(content_feat, style_feat):
    """Adaptive instance normalization.
    Adjust the reference features to have the similar color and illuminations
    as those in the degradate features.
    Args:
        content_feat (Tensor): The reference feature.
        style_feat (Tensor): The degradate features.
    """
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)
    normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(
        size
    )
    return normalized_feat * style_std.expand(size) + style_mean.expand(size)


class PositionEmbeddingSine(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """

    def __init__(
        self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
    ):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, x, mask=None):
        if mask is None:
            mask = torch.zeros(
                (x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool
            )
        not_mask = ~mask  # pylint: disable=invalid-unary-operand-type
        y_embed = not_mask.cumsum(1, dtype=torch.float32)
        x_embed = not_mask.cumsum(2, dtype=torch.float32)
        if self.normalize:
            eps = 1e-6
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack(
            (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
        ).flatten(3)
        pos_y = torch.stack(
            (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
        ).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(f"activation should be relu/gelu, not {activation}.")


class TransformerSALayer(nn.Module):
    def __init__(
        self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"
    ):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
        # Implementation of Feedforward model - MLP
        self.linear1 = nn.Linear(embed_dim, dim_mlp)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_mlp, embed_dim)

        self.norm1 = nn.LayerNorm(embed_dim)
        self.norm2 = nn.LayerNorm(embed_dim)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward(
        self,
        tgt,
        tgt_mask: Optional[Tensor] = None,
        tgt_key_padding_mask: Optional[Tensor] = None,
        query_pos: Optional[Tensor] = None,
    ):
        # self attention
        tgt2 = self.norm1(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        tgt2 = self.self_attn(
            q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
        )[0]
        tgt = tgt + self.dropout1(tgt2)

        # ffn
        tgt2 = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout2(tgt2)
        return tgt


def normalize(in_channels):
    return torch.nn.GroupNorm(
        num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
    )


@torch.jit.script  # type: ignore
def swish(x):
    return x * torch.sigmoid(x)


class ResBlock(nn.Module):
    def __init__(self, in_channels, out_channels=None):
        super(ResBlock, self).__init__()
        self.in_channels = in_channels
        self.out_channels = in_channels if out_channels is None else out_channels
        self.norm1 = normalize(in_channels)
        self.conv1 = nn.Conv2d(
            in_channels, out_channels, kernel_size=3, stride=1, padding=1  # type: ignore
        )
        self.norm2 = normalize(out_channels)
        self.conv2 = nn.Conv2d(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1  # type: ignore
        )
        if self.in_channels != self.out_channels:
            self.conv_out = nn.Conv2d(
                in_channels, out_channels, kernel_size=1, stride=1, padding=0  # type: ignore
            )

    def forward(self, x_in):
        x = x_in
        x = self.norm1(x)
        x = swish(x)
        x = self.conv1(x)
        x = self.norm2(x)
        x = swish(x)
        x = self.conv2(x)
        if self.in_channels != self.out_channels:
            x_in = self.conv_out(x_in)

        return x + x_in


class Fuse_sft_block(nn.Module):
    def __init__(self, in_ch, out_ch):
        super().__init__()
        self.encode_enc = ResBlock(2 * in_ch, out_ch)

        self.scale = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
        )

        self.shift = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
        )

    def forward(self, enc_feat, dec_feat, w=1):
        enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
        scale = self.scale(enc_feat)
        shift = self.shift(enc_feat)
        residual = w * (dec_feat * scale + shift)
        out = dec_feat + residual
        return out


class CodeFormer(VQAutoEncoder):
    def __init__(self, state_dict):
        dim_embd = 512
        n_head = 8
        n_layers = 9
        codebook_size = 1024
        latent_size = 256
        connect_list = ["32", "64", "128", "256"]
        fix_modules = ["quantize", "generator"]

        # This is just a guess as I only have one model to look at
        position_emb = state_dict["position_emb"]
        dim_embd = position_emb.shape[1]
        latent_size = position_emb.shape[0]

        try:
            n_layers = len(
                set([x.split(".")[1] for x in state_dict.keys() if "ft_layers" in x])
            )
        except:
            pass

        codebook_size = state_dict["quantize.embedding.weight"].shape[0]

        # This is also just another guess
        n_head_exp = (
            state_dict["ft_layers.0.self_attn.in_proj_weight"].shape[0] // dim_embd
        )
        n_head = 2**n_head_exp

        in_nc = state_dict["encoder.blocks.0.weight"].shape[1]

        self.model_arch = "CodeFormer"
        self.sub_type = "Face SR"
        self.scale = 8
        self.in_nc = in_nc
        self.out_nc = in_nc

        self.state = state_dict

        self.supports_fp16 = False
        self.supports_bf16 = True
        self.min_size_restriction = 16

        super(CodeFormer, self).__init__(
            512, 64, [1, 2, 2, 4, 4, 8], "nearest", 2, [16], codebook_size
        )

        if fix_modules is not None:
            for module in fix_modules:
                for param in getattr(self, module).parameters():
                    param.requires_grad = False

        self.connect_list = connect_list
        self.n_layers = n_layers
        self.dim_embd = dim_embd
        self.dim_mlp = dim_embd * 2

        self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))  # type: ignore
        self.feat_emb = nn.Linear(256, self.dim_embd)

        # transformer
        self.ft_layers = nn.Sequential(
            *[
                TransformerSALayer(
                    embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0
                )
                for _ in range(self.n_layers)
            ]
        )

        # logits_predict head
        self.idx_pred_layer = nn.Sequential(
            nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)
        )

        self.channels = {
            "16": 512,
            "32": 256,
            "64": 256,
            "128": 128,
            "256": 128,
            "512": 64,
        }

        # after second residual block for > 16, before attn layer for ==16
        self.fuse_encoder_block = {
            "512": 2,
            "256": 5,
            "128": 8,
            "64": 11,
            "32": 14,
            "16": 18,
        }
        # after first residual block for > 16, before attn layer for ==16
        self.fuse_generator_block = {
            "16": 6,
            "32": 9,
            "64": 12,
            "128": 15,
            "256": 18,
            "512": 21,
        }

        # fuse_convs_dict
        self.fuse_convs_dict = nn.ModuleDict()
        for f_size in self.connect_list:
            in_ch = self.channels[f_size]
            self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)

        self.load_state_dict(state_dict)

    def _init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def forward(self, x, weight=0.5, **kwargs):
        detach_16 = True
        code_only = False
        adain = True
        # ################### Encoder #####################
        enc_feat_dict = {}
        out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
        for i, block in enumerate(self.encoder.blocks):
            x = block(x)
            if i in out_list:
                enc_feat_dict[str(x.shape[-1])] = x.clone()

        lq_feat = x
        # ################# Transformer ###################
        # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
        pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1)
        # BCHW -> BC(HW) -> (HW)BC
        feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1))
        query_emb = feat_emb
        # Transformer encoder
        for layer in self.ft_layers:
            query_emb = layer(query_emb, query_pos=pos_emb)

        # output logits
        logits = self.idx_pred_layer(query_emb)  # (hw)bn
        logits = logits.permute(1, 0, 2)  # (hw)bn -> b(hw)n

        if code_only:  # for training stage II
            # logits doesn't need softmax before cross_entropy loss
            return logits, lq_feat

        # ################# Quantization ###################
        # if self.training:
        #     quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
        #     # b(hw)c -> bc(hw) -> bchw
        #     quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
        # ------------
        soft_one_hot = F.softmax(logits, dim=2)
        _, top_idx = torch.topk(soft_one_hot, 1, dim=2)
        quant_feat = self.quantize.get_codebook_feat(
            top_idx, shape=[x.shape[0], 16, 16, 256]  # type: ignore
        )
        # preserve gradients
        # quant_feat = lq_feat + (quant_feat - lq_feat).detach()

        if detach_16:
            quant_feat = quant_feat.detach()  # for training stage III
        if adain:
            quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)

        # ################## Generator ####################
        x = quant_feat
        fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]

        for i, block in enumerate(self.generator.blocks):
            x = block(x)
            if i in fuse_list:  # fuse after i-th block
                f_size = str(x.shape[-1])
                if weight > 0:
                    x = self.fuse_convs_dict[f_size](
                        enc_feat_dict[f_size].detach(), x, weight
                    )
        out = x
        # logits doesn't need softmax before cross_entropy loss
        # return out, logits, lq_feat
        return out, logits