File size: 5,717 Bytes
b416439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import numpy as np
import datetime
import random
import math
import os
from PIL import Image
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
def resample_image(im, width, height):
im = Image.fromarray(im)
im = im.resize((int(width), int(height)), resample=LANCZOS)
return np.array(im)
def resize_image(im, width, height, resize_mode=1):
"""
Resizes an image with the specified resize_mode, width, and height.
Args:
resize_mode: The mode to use when resizing the image.
0: Resize the image to the specified width and height.
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
im: The image to resize.
width: The width to resize the image to.
height: The height to resize the image to.
"""
im = Image.fromarray(im)
def resize(im, w, h):
return im.resize((w, h), resample=LANCZOS)
if resize_mode == 0:
res = resize(im, width, height)
elif resize_mode == 1:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio > src_ratio else im.width * height // im.height
src_h = height if ratio <= src_ratio else im.height * width // im.width
resized = resize(im, src_w, src_h)
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
else:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio < src_ratio else im.width * height // im.height
src_h = height if ratio >= src_ratio else im.height * width // im.width
resized = resize(im, src_w, src_h)
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
if fill_height > 0:
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
if fill_width > 0:
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
return np.array(res)
def get_shape_ceil(h, w):
return math.ceil(((h * w) ** 0.5) / 64.0) * 64.0
def get_image_shape_ceil(im):
H, W = im.shape[:2]
return get_shape_ceil(H, W)
def set_image_shape_ceil(im, shape_ceil):
shape_ceil = float(shape_ceil)
H_origin, W_origin, _ = im.shape
H, W = H_origin, W_origin
for _ in range(256):
current_shape_ceil = get_shape_ceil(H, W)
if abs(current_shape_ceil - shape_ceil) < 0.1:
break
k = shape_ceil / current_shape_ceil
H = int(round(float(H) * k / 64.0) * 64)
W = int(round(float(W) * k / 64.0) * 64)
if H == H_origin and W == W_origin:
return im
return resample_image(im, width=W, height=H)
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def remove_empty_str(items, default=None):
items = [x for x in items if x != ""]
if len(items) == 0 and default is not None:
return [default]
return items
def join_prompts(*args, **kwargs):
prompts = [str(x) for x in args if str(x) != ""]
if len(prompts) == 0:
return ""
if len(prompts) == 1:
return prompts[0]
return ', '.join(prompts)
def generate_temp_filename(folder='./outputs/', extension='png'):
current_time = datetime.datetime.now()
date_string = current_time.strftime("%Y-%m-%d")
time_string = current_time.strftime("%Y-%m-%d_%H-%M-%S")
random_number = random.randint(1000, 9999)
filename = f"{time_string}_{random_number}.{extension}"
result = os.path.join(folder, date_string, filename)
return date_string, os.path.abspath(os.path.realpath(result)), filename
def get_files_from_folder(folder_path, exensions=None, name_filter=None):
if not os.path.isdir(folder_path):
raise ValueError("Folder path is not a valid directory.")
filenames = []
for root, dirs, files in os.walk(folder_path):
relative_path = os.path.relpath(root, folder_path)
if relative_path == ".":
relative_path = ""
for filename in files:
_, file_extension = os.path.splitext(filename)
if (exensions == None or file_extension.lower() in exensions) and (name_filter == None or name_filter in _):
path = os.path.join(relative_path, filename)
filenames.append(path)
return sorted(filenames, key=lambda x: -1 if os.sep in x else 1)
|