|
from extras.BLIP.models.med import BertConfig |
|
from extras.BLIP.models.nlvr_encoder import BertModel |
|
from extras.BLIP.models.vit import interpolate_pos_embed |
|
from extras.BLIP.models.blip import create_vit, init_tokenizer, is_url |
|
|
|
from timm.models.hub import download_cached_file |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from transformers import BertTokenizer |
|
import numpy as np |
|
import os |
|
|
|
|
|
class BLIP_NLVR(nn.Module): |
|
def __init__(self, |
|
med_config = 'configs/med_config.json', |
|
image_size = 480, |
|
vit = 'base', |
|
vit_grad_ckpt = False, |
|
vit_ckpt_layer = 0, |
|
): |
|
""" |
|
Args: |
|
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|
image_size (int): input image size |
|
vit (str): model size of vision transformer |
|
""" |
|
super().__init__() |
|
|
|
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1) |
|
self.tokenizer = init_tokenizer() |
|
med_config = BertConfig.from_json_file(med_config) |
|
med_config.encoder_width = vision_width |
|
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) |
|
|
|
self.cls_head = nn.Sequential( |
|
nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size), |
|
nn.ReLU(), |
|
nn.Linear(self.text_encoder.config.hidden_size, 2) |
|
) |
|
|
|
def forward(self, image, text, targets, train=True): |
|
|
|
image_embeds = self.visual_encoder(image) |
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) |
|
image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0)) |
|
|
|
text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device) |
|
text.input_ids[:,0] = self.tokenizer.enc_token_id |
|
|
|
output = self.text_encoder(text.input_ids, |
|
attention_mask = text.attention_mask, |
|
encoder_hidden_states = [image0_embeds,image1_embeds], |
|
encoder_attention_mask = [image_atts[:image0_embeds.size(0)], |
|
image_atts[image0_embeds.size(0):]], |
|
return_dict = True, |
|
) |
|
hidden_state = output.last_hidden_state[:,0,:] |
|
prediction = self.cls_head(hidden_state) |
|
|
|
if train: |
|
loss = F.cross_entropy(prediction, targets) |
|
return loss |
|
else: |
|
return prediction |
|
|
|
def blip_nlvr(pretrained='',**kwargs): |
|
model = BLIP_NLVR(**kwargs) |
|
if pretrained: |
|
model,msg = load_checkpoint(model,pretrained) |
|
print("missing keys:") |
|
print(msg.missing_keys) |
|
return model |
|
|
|
|
|
def load_checkpoint(model,url_or_filename): |
|
if is_url(url_or_filename): |
|
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) |
|
checkpoint = torch.load(cached_file, map_location='cpu') |
|
elif os.path.isfile(url_or_filename): |
|
checkpoint = torch.load(url_or_filename, map_location='cpu') |
|
else: |
|
raise RuntimeError('checkpoint url or path is invalid') |
|
state_dict = checkpoint['model'] |
|
|
|
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) |
|
|
|
for key in list(state_dict.keys()): |
|
if 'crossattention.self.' in key: |
|
new_key0 = key.replace('self','self0') |
|
new_key1 = key.replace('self','self1') |
|
state_dict[new_key0] = state_dict[key] |
|
state_dict[new_key1] = state_dict[key] |
|
elif 'crossattention.output.dense.' in key: |
|
new_key0 = key.replace('dense','dense0') |
|
new_key1 = key.replace('dense','dense1') |
|
state_dict[new_key0] = state_dict[key] |
|
state_dict[new_key1] = state_dict[key] |
|
|
|
msg = model.load_state_dict(state_dict,strict=False) |
|
print('load checkpoint from %s'%url_or_filename) |
|
return model,msg |
|
|