|
from .utils import load_torch_file, transformers_convert, common_upscale |
|
import os |
|
import torch |
|
import contextlib |
|
import json |
|
|
|
import ldm_patched.modules.ops |
|
import ldm_patched.modules.model_patcher |
|
import ldm_patched.modules.model_management |
|
import ldm_patched.modules.utils |
|
import ldm_patched.modules.clip_model |
|
|
|
class Output: |
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
def __setitem__(self, key, item): |
|
setattr(self, key, item) |
|
|
|
def clip_preprocess(image, size=224): |
|
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype) |
|
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype) |
|
scale = (size / min(image.shape[1], image.shape[2])) |
|
image = torch.nn.functional.interpolate(image.movedim(-1, 1), size=(round(scale * image.shape[1]), round(scale * image.shape[2])), mode="bicubic", antialias=True) |
|
h = (image.shape[2] - size)//2 |
|
w = (image.shape[3] - size)//2 |
|
image = image[:,:,h:h+size,w:w+size] |
|
image = torch.clip((255. * image), 0, 255).round() / 255.0 |
|
return (image - mean.view([3,1,1])) / std.view([3,1,1]) |
|
|
|
class ClipVisionModel(): |
|
def __init__(self, json_config): |
|
with open(json_config) as f: |
|
config = json.load(f) |
|
|
|
self.load_device = ldm_patched.modules.model_management.text_encoder_device() |
|
offload_device = ldm_patched.modules.model_management.text_encoder_offload_device() |
|
self.dtype = torch.float32 |
|
if ldm_patched.modules.model_management.should_use_fp16(self.load_device, prioritize_performance=False): |
|
self.dtype = torch.float16 |
|
|
|
self.model = ldm_patched.modules.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, ldm_patched.modules.ops.disable_weight_init) |
|
|
|
self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) |
|
def load_sd(self, sd): |
|
return self.model.load_state_dict(sd, strict=False) |
|
|
|
def encode_image(self, image): |
|
ldm_patched.modules.model_management.load_model_gpu(self.patcher) |
|
pixel_values = clip_preprocess(image.to(self.load_device)) |
|
|
|
if self.dtype != torch.float32: |
|
precision_scope = torch.autocast |
|
else: |
|
precision_scope = lambda a, b: contextlib.nullcontext(a) |
|
|
|
with precision_scope(ldm_patched.modules.model_management.get_autocast_device(self.load_device), torch.float32): |
|
out = self.model(pixel_values=pixel_values, intermediate_output=-2) |
|
|
|
outputs = Output() |
|
outputs["last_hidden_state"] = out[0].to(ldm_patched.modules.model_management.intermediate_device()) |
|
outputs["image_embeds"] = out[2].to(ldm_patched.modules.model_management.intermediate_device()) |
|
outputs["penultimate_hidden_states"] = out[1].to(ldm_patched.modules.model_management.intermediate_device()) |
|
return outputs |
|
|
|
def convert_to_transformers(sd, prefix): |
|
sd_k = sd.keys() |
|
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k: |
|
keys_to_replace = { |
|
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding", |
|
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight", |
|
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight", |
|
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias", |
|
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight", |
|
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias", |
|
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight", |
|
} |
|
|
|
for x in keys_to_replace: |
|
if x in sd_k: |
|
sd[keys_to_replace[x]] = sd.pop(x) |
|
|
|
if "{}proj".format(prefix) in sd_k: |
|
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1) |
|
|
|
sd = transformers_convert(sd, prefix, "vision_model.", 48) |
|
return sd |
|
|
|
def load_clipvision_from_sd(sd, prefix="", convert_keys=False): |
|
if convert_keys: |
|
sd = convert_to_transformers(sd, prefix) |
|
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd: |
|
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json") |
|
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: |
|
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") |
|
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: |
|
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") |
|
else: |
|
return None |
|
|
|
clip = ClipVisionModel(json_config) |
|
m, u = clip.load_sd(sd) |
|
if len(m) > 0: |
|
print("extra clip vision:", m) |
|
u = set(u) |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
if k not in u: |
|
t = sd.pop(k) |
|
del t |
|
return clip |
|
|
|
def load(ckpt_path): |
|
sd = load_torch_file(ckpt_path) |
|
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd: |
|
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True) |
|
else: |
|
return load_clipvision_from_sd(sd) |
|
|