burhaant's picture
Upload folder using huggingface_hub
b416439
raw
history blame
2.2 kB
import torch
from contextlib import contextmanager
class disable_weight_init:
class Linear(torch.nn.Linear):
def reset_parameters(self):
return None
class Conv2d(torch.nn.Conv2d):
def reset_parameters(self):
return None
class Conv3d(torch.nn.Conv3d):
def reset_parameters(self):
return None
class GroupNorm(torch.nn.GroupNorm):
def reset_parameters(self):
return None
class LayerNorm(torch.nn.LayerNorm):
def reset_parameters(self):
return None
@classmethod
def conv_nd(s, dims, *args, **kwargs):
if dims == 2:
return s.Conv2d(*args, **kwargs)
elif dims == 3:
return s.Conv3d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
def cast_bias_weight(s, input):
bias = None
if s.bias is not None:
bias = s.bias.to(device=input.device, dtype=input.dtype)
weight = s.weight.to(device=input.device, dtype=input.dtype)
return weight, bias
class manual_cast(disable_weight_init):
class Linear(disable_weight_init.Linear):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
class Conv2d(disable_weight_init.Conv2d):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
class Conv3d(disable_weight_init.Conv3d):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
class GroupNorm(disable_weight_init.GroupNorm):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
class LayerNorm(disable_weight_init.LayerNorm):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)