|
import torch |
|
import ldm_patched.modules.model_management |
|
import ldm_patched.modules.samplers |
|
import ldm_patched.modules.conds |
|
import ldm_patched.modules.utils |
|
import math |
|
import numpy as np |
|
|
|
def prepare_noise(latent_image, seed, noise_inds=None): |
|
""" |
|
creates random noise given a latent image and a seed. |
|
optional arg skip can be used to skip and discard x number of noise generations for a given seed |
|
""" |
|
generator = torch.manual_seed(seed) |
|
if noise_inds is None: |
|
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") |
|
|
|
unique_inds, inverse = np.unique(noise_inds, return_inverse=True) |
|
noises = [] |
|
for i in range(unique_inds[-1]+1): |
|
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") |
|
if i in unique_inds: |
|
noises.append(noise) |
|
noises = [noises[i] for i in inverse] |
|
noises = torch.cat(noises, axis=0) |
|
return noises |
|
|
|
def prepare_mask(noise_mask, shape, device): |
|
"""ensures noise mask is of proper dimensions""" |
|
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") |
|
noise_mask = noise_mask.round() |
|
noise_mask = torch.cat([noise_mask] * shape[1], dim=1) |
|
noise_mask = ldm_patched.modules.utils.repeat_to_batch_size(noise_mask, shape[0]) |
|
noise_mask = noise_mask.to(device) |
|
return noise_mask |
|
|
|
def get_models_from_cond(cond, model_type): |
|
models = [] |
|
for c in cond: |
|
if model_type in c: |
|
models += [c[model_type]] |
|
return models |
|
|
|
def convert_cond(cond): |
|
out = [] |
|
for c in cond: |
|
temp = c[1].copy() |
|
model_conds = temp.get("model_conds", {}) |
|
if c[0] is not None: |
|
model_conds["c_crossattn"] = ldm_patched.modules.conds.CONDCrossAttn(c[0]) |
|
temp["model_conds"] = model_conds |
|
out.append(temp) |
|
return out |
|
|
|
def get_additional_models(positive, negative, dtype): |
|
"""loads additional models in positive and negative conditioning""" |
|
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")) |
|
|
|
inference_memory = 0 |
|
control_models = [] |
|
for m in control_nets: |
|
control_models += m.get_models() |
|
inference_memory += m.inference_memory_requirements(dtype) |
|
|
|
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen") |
|
gligen = [x[1] for x in gligen] |
|
models = control_models + gligen |
|
return models, inference_memory |
|
|
|
def cleanup_additional_models(models): |
|
"""cleanup additional models that were loaded""" |
|
for m in models: |
|
if hasattr(m, 'cleanup'): |
|
m.cleanup() |
|
|
|
def prepare_sampling(model, noise_shape, positive, negative, noise_mask): |
|
device = model.load_device |
|
positive = convert_cond(positive) |
|
negative = convert_cond(negative) |
|
|
|
if noise_mask is not None: |
|
noise_mask = prepare_mask(noise_mask, noise_shape, device) |
|
|
|
real_model = None |
|
models, inference_memory = get_additional_models(positive, negative, model.model_dtype()) |
|
ldm_patched.modules.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory) |
|
real_model = model.model |
|
|
|
return real_model, positive, negative, noise_mask, models |
|
|
|
|
|
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): |
|
real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask) |
|
|
|
noise = noise.to(model.load_device) |
|
latent_image = latent_image.to(model.load_device) |
|
|
|
sampler = ldm_patched.modules.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) |
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) |
|
samples = samples.to(ldm_patched.modules.model_management.intermediate_device()) |
|
|
|
cleanup_additional_models(models) |
|
cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control"))) |
|
return samples |
|
|
|
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None): |
|
real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask) |
|
noise = noise.to(model.load_device) |
|
latent_image = latent_image.to(model.load_device) |
|
sigmas = sigmas.to(model.load_device) |
|
|
|
samples = ldm_patched.modules.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) |
|
samples = samples.to(ldm_patched.modules.model_management.intermediate_device()) |
|
cleanup_additional_models(models) |
|
cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control"))) |
|
return samples |
|
|
|
|