|
import torch.nn as nn |
|
|
|
|
|
def conv3x3(inplanes, outplanes, stride=1): |
|
"""A simple wrapper for 3x3 convolution with padding. |
|
|
|
Args: |
|
inplanes (int): Channel number of inputs. |
|
outplanes (int): Channel number of outputs. |
|
stride (int): Stride in convolution. Default: 1. |
|
""" |
|
return nn.Conv2d( |
|
inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
"""Basic residual block used in the ResNetArcFace architecture. |
|
|
|
Args: |
|
inplanes (int): Channel number of inputs. |
|
planes (int): Channel number of outputs. |
|
stride (int): Stride in convolution. Default: 1. |
|
downsample (nn.Module): The downsample module. Default: None. |
|
""" |
|
|
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class IRBlock(nn.Module): |
|
"""Improved residual block (IR Block) used in the ResNetArcFace architecture. |
|
|
|
Args: |
|
inplanes (int): Channel number of inputs. |
|
planes (int): Channel number of outputs. |
|
stride (int): Stride in convolution. Default: 1. |
|
downsample (nn.Module): The downsample module. Default: None. |
|
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. |
|
""" |
|
|
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): |
|
super(IRBlock, self).__init__() |
|
self.bn0 = nn.BatchNorm2d(inplanes) |
|
self.conv1 = conv3x3(inplanes, inplanes) |
|
self.bn1 = nn.BatchNorm2d(inplanes) |
|
self.prelu = nn.PReLU() |
|
self.conv2 = conv3x3(inplanes, planes, stride) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.use_se = use_se |
|
if self.use_se: |
|
self.se = SEBlock(planes) |
|
|
|
def forward(self, x): |
|
residual = x |
|
out = self.bn0(x) |
|
out = self.conv1(out) |
|
out = self.bn1(out) |
|
out = self.prelu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
if self.use_se: |
|
out = self.se(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.prelu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
"""Bottleneck block used in the ResNetArcFace architecture. |
|
|
|
Args: |
|
inplanes (int): Channel number of inputs. |
|
planes (int): Channel number of outputs. |
|
stride (int): Stride in convolution. Default: 1. |
|
downsample (nn.Module): The downsample module. Default: None. |
|
""" |
|
|
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d( |
|
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d( |
|
planes, planes * self.expansion, kernel_size=1, bias=False |
|
) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class SEBlock(nn.Module): |
|
"""The squeeze-and-excitation block (SEBlock) used in the IRBlock. |
|
|
|
Args: |
|
channel (int): Channel number of inputs. |
|
reduction (int): Channel reduction ration. Default: 16. |
|
""" |
|
|
|
def __init__(self, channel, reduction=16): |
|
super(SEBlock, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d( |
|
1 |
|
) |
|
self.fc = nn.Sequential( |
|
nn.Linear(channel, channel // reduction), |
|
nn.PReLU(), |
|
nn.Linear(channel // reduction, channel), |
|
nn.Sigmoid(), |
|
) |
|
|
|
def forward(self, x): |
|
b, c, _, _ = x.size() |
|
y = self.avg_pool(x).view(b, c) |
|
y = self.fc(y).view(b, c, 1, 1) |
|
return x * y |
|
|
|
|
|
class ResNetArcFace(nn.Module): |
|
"""ArcFace with ResNet architectures. |
|
|
|
Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition. |
|
|
|
Args: |
|
block (str): Block used in the ArcFace architecture. |
|
layers (tuple(int)): Block numbers in each layer. |
|
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. |
|
""" |
|
|
|
def __init__(self, block, layers, use_se=True): |
|
if block == "IRBlock": |
|
block = IRBlock |
|
self.inplanes = 64 |
|
self.use_se = use_se |
|
super(ResNetArcFace, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.prelu = nn.PReLU() |
|
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
self.bn4 = nn.BatchNorm2d(512) |
|
self.dropout = nn.Dropout() |
|
self.fc5 = nn.Linear(512 * 8 * 8, 512) |
|
self.bn5 = nn.BatchNorm1d(512) |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.xavier_normal_(m.weight) |
|
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.xavier_normal_(m.weight) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
layers = [] |
|
layers.append( |
|
block(self.inplanes, planes, stride, downsample, use_se=self.use_se) |
|
) |
|
self.inplanes = planes |
|
for _ in range(1, num_blocks): |
|
layers.append(block(self.inplanes, planes, use_se=self.use_se)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.prelu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.bn4(x) |
|
x = self.dropout(x) |
|
x = x.view(x.size(0), -1) |
|
x = self.fc5(x) |
|
x = self.bn5(x) |
|
|
|
return x |
|
|