|
import os |
|
import torch |
|
import time |
|
import numpy as np |
|
import math |
|
import ldm_patched.modules.model_base |
|
import ldm_patched.ldm.modules.diffusionmodules.openaimodel |
|
import ldm_patched.modules.samplers |
|
import ldm_patched.modules.model_management |
|
import modules.anisotropic as anisotropic |
|
import ldm_patched.ldm.modules.attention |
|
import ldm_patched.k_diffusion.sampling |
|
import ldm_patched.modules.sd1_clip |
|
import modules.inpaint_worker as inpaint_worker |
|
import ldm_patched.ldm.modules.diffusionmodules.openaimodel |
|
import ldm_patched.ldm.modules.diffusionmodules.model |
|
import ldm_patched.modules.sd |
|
import ldm_patched.controlnet.cldm |
|
import ldm_patched.modules.model_patcher |
|
import ldm_patched.modules.samplers |
|
import ldm_patched.modules.args_parser |
|
import modules.advanced_parameters as advanced_parameters |
|
import warnings |
|
import safetensors.torch |
|
import modules.constants as constants |
|
|
|
from einops import repeat |
|
from ldm_patched.k_diffusion.sampling import BatchedBrownianTree |
|
from ldm_patched.ldm.modules.diffusionmodules.openaimodel import forward_timestep_embed, apply_control |
|
from ldm_patched.ldm.modules.diffusionmodules.util import make_beta_schedule |
|
|
|
|
|
sharpness = 2.0 |
|
|
|
adm_scaler_end = 0.3 |
|
positive_adm_scale = 1.5 |
|
negative_adm_scale = 0.8 |
|
|
|
adaptive_cfg = 7.0 |
|
global_diffusion_progress = 0 |
|
eps_record = None |
|
|
|
|
|
def calculate_weight_patched(self, patches, weight, key): |
|
for p in patches: |
|
alpha = p[0] |
|
v = p[1] |
|
strength_model = p[2] |
|
|
|
if strength_model != 1.0: |
|
weight *= strength_model |
|
|
|
if isinstance(v, list): |
|
v = (self.calculate_weight(v[1:], v[0].clone(), key),) |
|
|
|
if len(v) == 1: |
|
patch_type = "diff" |
|
elif len(v) == 2: |
|
patch_type = v[0] |
|
v = v[1] |
|
|
|
if patch_type == "diff": |
|
w1 = v[0] |
|
if alpha != 0.0: |
|
if w1.shape != weight.shape: |
|
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) |
|
else: |
|
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype) |
|
elif patch_type == "lora": |
|
mat1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32) |
|
mat2 = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32) |
|
if v[2] is not None: |
|
alpha *= v[2] / mat2.shape[0] |
|
if v[3] is not None: |
|
mat3 = ldm_patched.modules.model_management.cast_to_device(v[3], weight.device, torch.float32) |
|
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] |
|
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), |
|
mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) |
|
try: |
|
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape( |
|
weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
elif patch_type == "fooocus": |
|
w1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32) |
|
w_min = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32) |
|
w_max = ldm_patched.modules.model_management.cast_to_device(v[2], weight.device, torch.float32) |
|
w1 = (w1 / 255.0) * (w_max - w_min) + w_min |
|
if alpha != 0.0: |
|
if w1.shape != weight.shape: |
|
print("WARNING SHAPE MISMATCH {} FOOOCUS WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) |
|
else: |
|
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype) |
|
elif patch_type == "lokr": |
|
w1 = v[0] |
|
w2 = v[1] |
|
w1_a = v[3] |
|
w1_b = v[4] |
|
w2_a = v[5] |
|
w2_b = v[6] |
|
t2 = v[7] |
|
dim = None |
|
|
|
if w1 is None: |
|
dim = w1_b.shape[0] |
|
w1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1_a, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w1_b, weight.device, torch.float32)) |
|
else: |
|
w1 = ldm_patched.modules.model_management.cast_to_device(w1, weight.device, torch.float32) |
|
|
|
if w2 is None: |
|
dim = w2_b.shape[0] |
|
if t2 is None: |
|
w2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32)) |
|
else: |
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l', |
|
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32)) |
|
else: |
|
w2 = ldm_patched.modules.model_management.cast_to_device(w2, weight.device, torch.float32) |
|
|
|
if len(w2.shape) == 4: |
|
w1 = w1.unsqueeze(2).unsqueeze(2) |
|
if v[2] is not None and dim is not None: |
|
alpha *= v[2] / dim |
|
|
|
try: |
|
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
elif patch_type == "loha": |
|
w1a = v[0] |
|
w1b = v[1] |
|
if v[2] is not None: |
|
alpha *= v[2] / w1b.shape[0] |
|
w2a = v[3] |
|
w2b = v[4] |
|
if v[5] is not None: |
|
t1 = v[5] |
|
t2 = v[6] |
|
m1 = torch.einsum('i j k l, j r, i p -> p r k l', |
|
ldm_patched.modules.model_management.cast_to_device(t1, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32)) |
|
|
|
m2 = torch.einsum('i j k l, j r, i p -> p r k l', |
|
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32)) |
|
else: |
|
m1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32)) |
|
m2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32), |
|
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32)) |
|
|
|
try: |
|
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
elif patch_type == "glora": |
|
if v[4] is not None: |
|
alpha *= v[4] / v[0].shape[0] |
|
|
|
a1 = ldm_patched.modules.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32) |
|
a2 = ldm_patched.modules.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32) |
|
b1 = ldm_patched.modules.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32) |
|
b2 = ldm_patched.modules.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32) |
|
|
|
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype) |
|
else: |
|
print("patch type not recognized", patch_type, key) |
|
|
|
return weight |
|
|
|
|
|
class BrownianTreeNoiseSamplerPatched: |
|
transform = None |
|
tree = None |
|
global_sigma_min = 1.0 |
|
global_sigma_max = 1.0 |
|
|
|
@staticmethod |
|
def global_init(x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False): |
|
if ldm_patched.modules.model_management.directml_enabled: |
|
cpu = True |
|
|
|
t0, t1 = transform(torch.as_tensor(sigma_min)), transform(torch.as_tensor(sigma_max)) |
|
|
|
BrownianTreeNoiseSamplerPatched.transform = transform |
|
BrownianTreeNoiseSamplerPatched.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu) |
|
|
|
BrownianTreeNoiseSamplerPatched.global_sigma_min = sigma_min |
|
BrownianTreeNoiseSamplerPatched.global_sigma_max = sigma_max |
|
|
|
def __init__(self, *args, **kwargs): |
|
pass |
|
|
|
@staticmethod |
|
def __call__(sigma, sigma_next): |
|
transform = BrownianTreeNoiseSamplerPatched.transform |
|
tree = BrownianTreeNoiseSamplerPatched.tree |
|
|
|
t0, t1 = transform(torch.as_tensor(sigma)), transform(torch.as_tensor(sigma_next)) |
|
return tree(t0, t1) / (t1 - t0).abs().sqrt() |
|
|
|
|
|
def compute_cfg(uncond, cond, cfg_scale, t): |
|
global adaptive_cfg |
|
|
|
mimic_cfg = float(adaptive_cfg) |
|
real_cfg = float(cfg_scale) |
|
|
|
real_eps = uncond + real_cfg * (cond - uncond) |
|
|
|
if cfg_scale > adaptive_cfg: |
|
mimicked_eps = uncond + mimic_cfg * (cond - uncond) |
|
return real_eps * t + mimicked_eps * (1 - t) |
|
else: |
|
return real_eps |
|
|
|
|
|
def patched_sampler_cfg_function(args): |
|
global eps_record |
|
|
|
positive_eps = args['cond'] |
|
negative_eps = args['uncond'] |
|
cfg_scale = args['cond_scale'] |
|
positive_x0 = args['input'] - positive_eps |
|
sigma = args['sigma'] |
|
|
|
alpha = 0.001 * sharpness * global_diffusion_progress |
|
positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0) |
|
positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha) |
|
|
|
final_eps = compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted, |
|
cfg_scale=cfg_scale, t=global_diffusion_progress) |
|
|
|
if eps_record is not None: |
|
eps_record = (final_eps / sigma).cpu() |
|
|
|
return final_eps |
|
|
|
|
|
def sdxl_encode_adm_patched(self, **kwargs): |
|
global positive_adm_scale, negative_adm_scale |
|
|
|
clip_pooled = ldm_patched.modules.model_base.sdxl_pooled(kwargs, self.noise_augmentor) |
|
width = kwargs.get("width", 768) |
|
height = kwargs.get("height", 768) |
|
target_width = width |
|
target_height = height |
|
|
|
if kwargs.get("prompt_type", "") == "negative": |
|
width = float(width) * negative_adm_scale |
|
height = float(height) * negative_adm_scale |
|
elif kwargs.get("prompt_type", "") == "positive": |
|
width = float(width) * positive_adm_scale |
|
height = float(height) * positive_adm_scale |
|
|
|
|
|
width = int(width) |
|
height = int(height) |
|
crop_w = 0 |
|
crop_h = 0 |
|
target_width = int(target_width) |
|
target_height = int(target_height) |
|
|
|
out_a = [self.embedder(torch.Tensor([height])), self.embedder(torch.Tensor([width])), |
|
self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])), |
|
self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width]))] |
|
flat_a = torch.flatten(torch.cat(out_a)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) |
|
|
|
out_b = [self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width])), |
|
self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])), |
|
self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width]))] |
|
flat_b = torch.flatten(torch.cat(out_b)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) |
|
|
|
return torch.cat((clip_pooled.to(flat_a.device), flat_a, clip_pooled.to(flat_b.device), flat_b), dim=1) |
|
|
|
|
|
def encode_token_weights_patched_with_a1111_method(self, token_weight_pairs): |
|
to_encode = list() |
|
max_token_len = 0 |
|
has_weights = False |
|
for x in token_weight_pairs: |
|
tokens = list(map(lambda a: a[0], x)) |
|
max_token_len = max(len(tokens), max_token_len) |
|
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x)) |
|
to_encode.append(tokens) |
|
|
|
sections = len(to_encode) |
|
if has_weights or sections == 0: |
|
to_encode.append(ldm_patched.modules.sd1_clip.gen_empty_tokens(self.special_tokens, max_token_len)) |
|
|
|
out, pooled = self.encode(to_encode) |
|
if pooled is not None: |
|
first_pooled = pooled[0:1].to(ldm_patched.modules.model_management.intermediate_device()) |
|
else: |
|
first_pooled = pooled |
|
|
|
output = [] |
|
for k in range(0, sections): |
|
z = out[k:k + 1] |
|
if has_weights: |
|
original_mean = z.mean() |
|
z_empty = out[-1] |
|
for i in range(len(z)): |
|
for j in range(len(z[i])): |
|
weight = token_weight_pairs[k][j][1] |
|
if weight != 1.0: |
|
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j] |
|
new_mean = z.mean() |
|
z = z * (original_mean / new_mean) |
|
output.append(z) |
|
|
|
if len(output) == 0: |
|
return out[-1:].to(ldm_patched.modules.model_management.intermediate_device()), first_pooled |
|
return torch.cat(output, dim=-2).to(ldm_patched.modules.model_management.intermediate_device()), first_pooled |
|
|
|
|
|
def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None): |
|
if inpaint_worker.current_task is not None: |
|
latent_processor = self.inner_model.inner_model.process_latent_in |
|
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x) |
|
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x) |
|
|
|
if getattr(self, 'energy_generator', None) is None: |
|
|
|
self.energy_generator = torch.Generator(device='cpu').manual_seed((seed + 1) % constants.MAX_SEED) |
|
|
|
energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1)) |
|
current_energy = torch.randn( |
|
x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma |
|
x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask) |
|
|
|
out = self.inner_model(x, sigma, |
|
cond=cond, |
|
uncond=uncond, |
|
cond_scale=cond_scale, |
|
model_options=model_options, |
|
seed=seed) |
|
|
|
out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask) |
|
else: |
|
out = self.inner_model(x, sigma, |
|
cond=cond, |
|
uncond=uncond, |
|
cond_scale=cond_scale, |
|
model_options=model_options, |
|
seed=seed) |
|
return out |
|
|
|
|
|
def timed_adm(y, timesteps): |
|
if isinstance(y, torch.Tensor) and int(y.dim()) == 2 and int(y.shape[1]) == 5632: |
|
y_mask = (timesteps > 999.0 * (1.0 - float(adm_scaler_end))).to(y)[..., None] |
|
y_with_adm = y[..., :2816].clone() |
|
y_without_adm = y[..., 2816:].clone() |
|
return y_with_adm * y_mask + y_without_adm * (1.0 - y_mask) |
|
return y |
|
|
|
|
|
def patched_cldm_forward(self, x, hint, timesteps, context, y=None, **kwargs): |
|
t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) |
|
emb = self.time_embed(t_emb) |
|
|
|
guided_hint = self.input_hint_block(hint, emb, context) |
|
|
|
y = timed_adm(y, timesteps) |
|
|
|
outs = [] |
|
|
|
hs = [] |
|
if self.num_classes is not None: |
|
assert y.shape[0] == x.shape[0] |
|
emb = emb + self.label_emb(y) |
|
|
|
h = x |
|
for module, zero_conv in zip(self.input_blocks, self.zero_convs): |
|
if guided_hint is not None: |
|
h = module(h, emb, context) |
|
h += guided_hint |
|
guided_hint = None |
|
else: |
|
h = module(h, emb, context) |
|
outs.append(zero_conv(h, emb, context)) |
|
|
|
h = self.middle_block(h, emb, context) |
|
outs.append(self.middle_block_out(h, emb, context)) |
|
|
|
if advanced_parameters.controlnet_softness > 0: |
|
for i in range(10): |
|
k = 1.0 - float(i) / 9.0 |
|
outs[i] = outs[i] * (1.0 - advanced_parameters.controlnet_softness * k) |
|
|
|
return outs |
|
|
|
|
|
def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): |
|
global global_diffusion_progress |
|
|
|
self.current_step = 1.0 - timesteps.to(x) / 999.0 |
|
global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0]) |
|
|
|
y = timed_adm(y, timesteps) |
|
|
|
transformer_options["original_shape"] = list(x.shape) |
|
transformer_options["transformer_index"] = 0 |
|
transformer_patches = transformer_options.get("patches", {}) |
|
|
|
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames) |
|
image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator) |
|
time_context = kwargs.get("time_context", None) |
|
|
|
assert (y is not None) == ( |
|
self.num_classes is not None |
|
), "must specify y if and only if the model is class-conditional" |
|
hs = [] |
|
t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) |
|
emb = self.time_embed(t_emb) |
|
|
|
if self.num_classes is not None: |
|
assert y.shape[0] == x.shape[0] |
|
emb = emb + self.label_emb(y) |
|
|
|
h = x |
|
for id, module in enumerate(self.input_blocks): |
|
transformer_options["block"] = ("input", id) |
|
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) |
|
h = apply_control(h, control, 'input') |
|
if "input_block_patch" in transformer_patches: |
|
patch = transformer_patches["input_block_patch"] |
|
for p in patch: |
|
h = p(h, transformer_options) |
|
|
|
hs.append(h) |
|
if "input_block_patch_after_skip" in transformer_patches: |
|
patch = transformer_patches["input_block_patch_after_skip"] |
|
for p in patch: |
|
h = p(h, transformer_options) |
|
|
|
transformer_options["block"] = ("middle", 0) |
|
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) |
|
h = apply_control(h, control, 'middle') |
|
|
|
for id, module in enumerate(self.output_blocks): |
|
transformer_options["block"] = ("output", id) |
|
hsp = hs.pop() |
|
hsp = apply_control(hsp, control, 'output') |
|
|
|
if "output_block_patch" in transformer_patches: |
|
patch = transformer_patches["output_block_patch"] |
|
for p in patch: |
|
h, hsp = p(h, hsp, transformer_options) |
|
|
|
h = torch.cat([h, hsp], dim=1) |
|
del hsp |
|
if len(hs) > 0: |
|
output_shape = hs[-1].shape |
|
else: |
|
output_shape = None |
|
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) |
|
h = h.type(x.dtype) |
|
if self.predict_codebook_ids: |
|
return self.id_predictor(h) |
|
else: |
|
return self.out(h) |
|
|
|
|
|
def patched_load_models_gpu(*args, **kwargs): |
|
execution_start_time = time.perf_counter() |
|
y = ldm_patched.modules.model_management.load_models_gpu_origin(*args, **kwargs) |
|
moving_time = time.perf_counter() - execution_start_time |
|
if moving_time > 0.1: |
|
print(f'[Fooocus Model Management] Moving model(s) has taken {moving_time:.2f} seconds') |
|
return y |
|
|
|
|
|
def build_loaded(module, loader_name): |
|
original_loader_name = loader_name + '_origin' |
|
|
|
if not hasattr(module, original_loader_name): |
|
setattr(module, original_loader_name, getattr(module, loader_name)) |
|
|
|
original_loader = getattr(module, original_loader_name) |
|
|
|
def loader(*args, **kwargs): |
|
result = None |
|
try: |
|
result = original_loader(*args, **kwargs) |
|
except Exception as e: |
|
result = None |
|
exp = str(e) + '\n' |
|
for path in list(args) + list(kwargs.values()): |
|
if isinstance(path, str): |
|
if os.path.exists(path): |
|
exp += f'File corrupted: {path} \n' |
|
corrupted_backup_file = path + '.corrupted' |
|
if os.path.exists(corrupted_backup_file): |
|
os.remove(corrupted_backup_file) |
|
os.replace(path, corrupted_backup_file) |
|
if os.path.exists(path): |
|
os.remove(path) |
|
exp += f'Fooocus has tried to move the corrupted file to {corrupted_backup_file} \n' |
|
exp += f'You may try again now and Fooocus will download models again. \n' |
|
raise ValueError(exp) |
|
return result |
|
|
|
setattr(module, loader_name, loader) |
|
return |
|
|
|
|
|
def patched_timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): |
|
|
|
|
|
if not repeat_only: |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half |
|
).to(device=timesteps.device) |
|
args = timesteps[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
else: |
|
embedding = repeat(timesteps, 'b -> b d', d=dim) |
|
return embedding |
|
|
|
|
|
def patched_register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, |
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
|
|
|
|
if given_betas is not None: |
|
betas = given_betas |
|
else: |
|
betas = make_beta_schedule( |
|
beta_schedule, |
|
timesteps, |
|
linear_start=linear_start, |
|
linear_end=linear_end, |
|
cosine_s=cosine_s) |
|
|
|
alphas = 1. - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
sigmas = torch.tensor(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, dtype=torch.float32) |
|
self.set_sigmas(sigmas) |
|
return |
|
|
|
|
|
def patch_all(): |
|
if not hasattr(ldm_patched.modules.model_management, 'load_models_gpu_origin'): |
|
ldm_patched.modules.model_management.load_models_gpu_origin = ldm_patched.modules.model_management.load_models_gpu |
|
|
|
ldm_patched.modules.model_management.load_models_gpu = patched_load_models_gpu |
|
ldm_patched.modules.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched |
|
ldm_patched.controlnet.cldm.ControlNet.forward = patched_cldm_forward |
|
ldm_patched.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward |
|
ldm_patched.modules.model_base.SDXL.encode_adm = sdxl_encode_adm_patched |
|
ldm_patched.modules.sd1_clip.ClipTokenWeightEncoder.encode_token_weights = encode_token_weights_patched_with_a1111_method |
|
ldm_patched.modules.samplers.KSamplerX0Inpaint.forward = patched_KSamplerX0Inpaint_forward |
|
ldm_patched.k_diffusion.sampling.BrownianTreeNoiseSampler = BrownianTreeNoiseSamplerPatched |
|
|
|
|
|
ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding = patched_timestep_embedding |
|
ldm_patched.modules.model_base.ModelSamplingDiscrete._register_schedule = patched_register_schedule |
|
|
|
warnings.filterwarnings(action='ignore', module='torchsde') |
|
|
|
build_loaded(safetensors.torch, 'load_file') |
|
build_loaded(torch, 'load') |
|
|
|
return |
|
|