File size: 17,518 Bytes
fb09fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import os
from typing import Optional
import gradio as gr
import requests
from smolagents import CodeAgent, Tool
from smolagents.models import HfApiModel
from smolagents.monitoring import LogLevel
from gradio import ChatMessage

DEFAULT_MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
HF_API_TOKEN = os.getenv("HF_TOKEN")

# Tool descriptions for the UI
TOOL_DESCRIPTIONS = {
    "Hub Collections": "Add tool collections from Hugging Face Hub.",
    "Spaces": "Add tools from Hugging Face Spaces.",
}


def search_spaces(query, limit=1):
    """
    Search for Hugging Face Spaces using the API.
    Returns the first result or None if no results.
    """
    try:
        url = f"https://huggingface.co/api/spaces?search={query}&limit={limit}"
        response = requests.get(
            url, headers={"Authorization": f"Bearer {HF_API_TOKEN}"}
        )
        response.raise_for_status()

        spaces = response.json()
        if not spaces:
            return None

        # Get the first space
        space = spaces[0]
        space_id = space["id"]

        # Extract title and description
        title = space_id.split("/")[-1]  # Default to the last part of the ID
        description = f"Tool from {space_id}"

        # Try to get title from different possible locations
        if "title" in space:
            title = space["title"]
        elif "cardData" in space and "title" in space["cardData"]:
            title = space["cardData"]["title"]

        # Try to get description from different possible locations
        if "description" in space:
            description = space["description"]
        elif "cardData" in space and "description" in space["cardData"]:
            description = space["cardData"]["description"]

        return {
            "id": space_id,
            "title": title,
            "description": description,
        }
    except Exception as e:
        print(f"Error searching spaces: {e}")
        return None


def get_space_metadata(space_id):
    """
    Get metadata for a specific Hugging Face Space.
    """
    try:
        url = f"https://huggingface.co/api/spaces/{space_id}"
        response = requests.get(
            url, headers={"Authorization": f"Bearer {HF_API_TOKEN}"}
        )
        response.raise_for_status()

        space = response.json()

        # Extract title and description from the space data
        # The structure can vary, so we need to handle different cases
        title = space_id
        description = f"Tool from {space_id}"

        # Try to get title from different possible locations
        if "title" in space:
            title = space["title"]
        elif "cardData" in space and "title" in space["cardData"]:
            title = space["cardData"]["title"]
        else:
            # Use the last part of the space_id as a fallback title
            title = space_id.split("/")[-1]

        # Try to get description from different possible locations
        if "description" in space:
            description = space["description"]
        elif "cardData" in space and "description" in space["cardData"]:
            description = space["cardData"]["description"]

        return {
            "id": space_id,
            "title": title,
            "description": description,
        }
    except Exception as e:
        print(f"Error getting space metadata: {e}")
        return None


def create_agent(model_name, space_tools=None):
    """
    Create a CodeAgent with the specified model and tools.
    """
    if not space_tools:
        space_tools = []

    try:
        # Convert space tools to Tool objects
        tools = []
        for tool_info in space_tools:
            space_id = tool_info["id"]
            tool = Tool.from_space(
                space_id,
                name=tool_info.get("name", space_id),
                description=tool_info.get("description", ""),
            )
            tools.append(tool)

        # Initialize the HfApiModel with the model name
        model = HfApiModel(model_id=model_name, token=HF_API_TOKEN)

        # Create the agent with the tools and additional imports
        agent = CodeAgent(
            tools=tools,
            model=model,
            additional_authorized_imports=["PIL", "requests"],
            verbosity_level=LogLevel.DEBUG,  # Set higher verbosity for detailed logs
        )
        print(f"Agent created successfully with {len(tools)} tools")
        return agent
    except Exception as e:
        print(f"Error creating agent: {e}")

        # Try with a fallback model if the specified one fails
        try:
            print("Trying fallback model...")
            fallback_model = HfApiModel(
                model_id="Qwen/Qwen2.5-Coder-7B-Instruct", token=HF_API_TOKEN
            )

            agent = CodeAgent(
                tools=tools,
                model=fallback_model,
                additional_authorized_imports=["PIL", "requests"],
                verbosity_level=LogLevel.DEBUG,  # Set higher verbosity for detailed logs
            )
            print("Agent created successfully with fallback model")
            return agent
        except Exception as e:
            print(f"Error creating agent: {e}")
            return None


# Event handler functions
def on_search_spaces(query):
    if not query:
        return "Please enter a search term.", "", "", ""

    try:
        space_info = search_spaces(query)
        if space_info is None:
            return "No spaces found.", "", "", ""

        # Format the results as markdown
        results_md = "### Search Results:\n"
        results_md += f"- ID: `{space_info['id']}`\n"
        results_md += f"- Title: {space_info['title']}\n"
        results_md += f"- Description: {space_info['description']}\n"

        # Return values to update the UI
        return (
            results_md,
            space_info["id"],
            space_info["title"],
            space_info["description"],
        )
    except Exception as e:
        print(f"Error in search: {e}")
        return f"Error: {str(e)}", "", "", ""


def on_validate_space(space_id):
    if not space_id:
        return "Please enter a space ID or search term.", "", ""

    try:
        # First try to get metadata directly if it's a valid space ID
        space_info = get_space_metadata(space_id)

        # If not found, try to search for it
        if space_info is None:
            # Try to search for the space using the ID as a search term
            space_info = search_spaces(space_id)
            if space_info is None:
                return f"No spaces found for '{space_id}'.", "", ""

            # Format search result as markdown
            result_md = f"### Found Space via Search:\n"
            result_md += f"- ID: `{space_info['id']}`\n"
            result_md += f"- Title: {space_info['title']}\n"
            result_md += f"- Description: {space_info['description']}\n"

            return (
                result_md,
                space_info["title"],
                space_info["description"],
            )

        # Format direct match as markdown
        result_md = f"### Space Validated Successfully:\n"
        result_md += f"- ID: `{space_info['id']}`\n"
        result_md += f"- Title: {space_info['title']}\n"
        result_md += f"- Description: {space_info['description']}\n"

        return (
            result_md,
            space_info["title"],
            space_info["description"],
        )
    except Exception as e:
        print(f"Error validating space: {e}")
        return f"Error: {str(e)}", "", ""


def on_add_tool(space_id, space_name, space_description, current_tools):
    if not space_id:
        return (
            current_tools,
            "Please enter a space ID.",
        )

    # Check if this tool is already added
    for tool in current_tools:
        if tool["id"] == space_id:
            return (
                current_tools,
                f"Tool '{space_id}' is already added.",
            )

    # Add the new tool
    new_tool = {
        "id": space_id,
        "name": space_name if space_name else space_id,
        "description": space_description if space_description else "No description",
    }

    updated_tools = current_tools + [new_tool]

    # Format the tools as markdown
    tools_md = "### Added Tools:\n"
    for i, tool in enumerate(updated_tools, 1):
        tools_md += f"{i}. **{tool['name']}** (`{tool['id']}`)\n"
        tools_md += f"   {tool['description']}\n\n"

    return updated_tools, tools_md


def on_create_agent(model, space_tools):
    if not space_tools:
        return (
            None,
            [],
            "",
            "Please add at least one tool before creating an agent.",
            "No agent created yet.",
        )

    try:
        # Create the agent
        agent = create_agent(model, space_tools)

        if agent is None:
            return (
                None,
                [],
                "",
                "Failed to create agent. Please try again with different tools or model.",
                "No agent created yet.",
            )

        # Format the tools for display
        tools_str = ", ".join(
            [f"{tool['name']} ({tool['id']})" for tool in space_tools]
        )

        # Generate agent status
        agent_status = update_agent_status(agent)

        return (
            agent,
            [],
            "",
            f"βœ… Agent created successfully with {model}!\nTools: {tools_str}",
            agent_status,
        )
    except Exception as e:
        print(f"Error creating agent: {e}")
        return None, [], "", f"Error creating agent: {str(e)}", "No agent created yet."


def add_user_message(message, chat_history):
    """Add the user message to the chat history."""
    # For Gradio chatbot with type="messages", we need to use ChatMessage objects
    if not message:
        return "", chat_history

    # Add user message to chat history
    chat_history = chat_history + [ChatMessage(role="user", content=message)]
    return message, chat_history


def stream_to_gradio(
    agent,
    task: str,
    reset_agent_memory: bool = False,
    additional_args: Optional[dict] = None,
):
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""

    from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types
    from smolagents.agent_types import AgentAudio, AgentImage, AgentText

    for step_log in agent.run(
        task, stream=True, reset=reset_agent_memory, additional_args=additional_args
    ):
        for message in pull_messages_from_step(
            step_log,
        ):
            yield message

    final_answer = step_log  # Last log is the run's final_answer
    final_answer = handle_agent_output_types(final_answer)

    if isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
        )
    elif isinstance(final_answer, AgentText) and os.path.exists(
        final_answer.to_string()
    ):
        yield gr.ChatMessage(
            role="assistant",
            content=gr.Image(final_answer.to_string()),
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
        )
    else:
        yield gr.ChatMessage(
            role="assistant", content=f"**Final answer:** {str(final_answer)}"
        )


def stream_agent_response(agent, message, chat_history):
    """Stream the agent's response to the chat history."""
    if not message or agent is None:
        return chat_history

    # First yield the current chat history
    yield chat_history

    try:
        # Stream the agent's response
        for msg in stream_to_gradio(agent, message):
            # Add the message to chat history
            chat_history = chat_history + [msg]
            # Yield updated chat history
            yield chat_history
    except Exception as e:
        # Handle errors
        error_msg = f"Error: {str(e)}"
        chat_history = chat_history + [ChatMessage(role="assistant", content=error_msg)]
        yield chat_history


def on_clear(agent=None):
    """Clear the chat and reset the agent."""
    return (
        agent,
        [],
        "",
        "Agent cleared. Create a new one to continue.",
        "",
        gr.update(interactive=False),
    )


def update_agent_status(agent):
    """Update the agent status display with current information."""
    if agent is None:
        return "No agent created yet. Add a Space tool to get started."

    # Get agent information
    tools = agent.tools if hasattr(agent, "tools") else []
    tool_count = len(tools)

    # Create status message
    status = f"Agent ready with {tool_count} tools"
    return status


# Create the Gradio app
with gr.Blocks(title="AI Agent Builder") as app:
    gr.Markdown("# AI Agent Builder with SmolaGents")
    gr.Markdown("Build your own AI agent by selecting tools from Hugging Face Spaces.")

    # Agent state
    agent_state = gr.State(None)
    last_message = gr.State("")
    space_tools_state = gr.State([])

    # Message store for preserving user message
    msg_store = gr.State("")

    with gr.Row():
        # Left sidebar for tool configuration
        with gr.Column(scale=1):
            gr.Markdown("## Tool Configuration")
            gr.Markdown("Add multiple Hugging Face Spaces as tools for your agent:")

            # Hidden model input with default value
            model_input = gr.Textbox(
                value=DEFAULT_MODEL,
                label="Model",
                visible=False,
            )

            # Space tool input
            with gr.Group():
                gr.Markdown("### Add Space as Tool")
                space_tool_input = gr.Textbox(
                    label="Space ID or Search Term",
                    placeholder=("Enter a Space ID or search term"),
                    info="Enter a Space ID (username/space-name) or search term",
                )
                space_name_input = gr.Textbox(
                    label="Tool Name (optional)",
                    placeholder="Enter a name for this tool",
                )
                space_description_input = gr.Textbox(
                    label="Tool Description (optional)",
                    placeholder="Enter a description for this tool",
                    lines=2,
                )
                add_tool_button = gr.Button("Add Tool", variant="primary")

            # Display added tools
            gr.Markdown("### Added Tools")
            tools_display = gr.Markdown(
                "No tools added yet. Add at least one tool before creating an agent."
            )

            # Create agent button
            create_button = gr.Button(
                "Create Agent with Selected Tools", variant="secondary", size="lg"
            )

            # Status message
            status_msg = gr.Markdown("")

            # Agent status display
            agent_status = gr.Markdown("No agent created yet.")

        # Main content area
        with gr.Column(scale=2):
            # Chat interface for the agent
            chatbot = gr.Chatbot(
                label="Agent Chat",
                height=600,
                show_copy_button=True,
                avatar_images=("πŸ‘€", "πŸ€–"),
                type="messages",  # Use messages type for ChatMessage objects
            )
            msg = gr.Textbox(
                label="Your message",
                placeholder="Type a message to your agent...",
                interactive=True,
            )

            with gr.Row():
                with gr.Column(scale=1, min_width=60):
                    clear = gr.Button("πŸ—‘οΈ", scale=1)
                with gr.Column(scale=8):
                    # Empty column for spacing
                    pass

    # Connect event handlers
    # Connect the space_tool_input submit event to the validation handler
    space_tool_input.submit(
        on_validate_space,
        inputs=[space_tool_input],
        outputs=[status_msg, space_name_input, space_description_input],
    )

    # Connect the add tool button
    add_tool_button.click(
        on_add_tool,
        inputs=[
            space_tool_input,
            space_name_input,
            space_description_input,
            space_tools_state,
        ],
        outputs=[space_tools_state, tools_display],
    )

    # Connect the create button to the handler
    create_button.click(
        on_create_agent,
        inputs=[model_input, space_tools_state],
        outputs=[agent_state, chatbot, msg, status_msg, agent_status],
    )

    # Connect the message input to the chain of handlers
    msg.submit(
        lambda message: (message, message, ""),  # Store message and clear input
        inputs=[msg],
        outputs=[msg_store, msg, msg],
        queue=False,
    ).then(
        add_user_message,  # Add user message to chat
        inputs=[msg_store, chatbot],
        outputs=[msg_store, chatbot],
        queue=False,
    ).then(
        stream_agent_response,  # Generate and stream response
        inputs=[agent_state, msg_store, chatbot],
        outputs=chatbot,
        queue=True,
    )


if __name__ == "__main__":
    app.queue().launch()