dataset_quiz / app.py
aovabo's picture
Fix for Resolving Skipping Question 1 and Submission Errors in Quiz
e95503f verified
raw
history blame
8.3 kB
import os
from datetime import datetime
import random
import gradio as gr
from datasets import load_dataset, Dataset
from huggingface_hub import whoami
EXAM_DATASET_ID = os.getenv("EXAM_DATASET_ID") or "agents-course/unit_1_quiz"
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 10
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.7
ds = load_dataset(EXAM_DATASET_ID, split="train")
# Convert dataset to a list of dicts and randomly sort
quiz_data = ds.to_pandas().to_dict("records")
random.shuffle(quiz_data)
# Limit to max questions if specified
if EXAM_MAX_QUESTIONS:
quiz_data = quiz_data[: int(EXAM_MAX_QUESTIONS)]
def on_user_logged_in(token: gr.OAuthToken | None):
"""
If the user has a valid token, hide the login button and show the Start button.
Otherwise, keep the login button visible, hide Start.
"""
if token is not None:
return gr.update(visible=False), gr.update(visible=False)
else:
# Not logged in, keep the login visible, hide Start
return gr.update(visible=True), gr.update(visible=False)
def push_results_to_hub(user_answers, token: gr.OAuthToken | None):
"""
Create a new dataset from user_answers and push it to the Hub.
Calculates grade and checks against passing threshold.
"""
if token is None:
gr.Warning("Please log in to Hugging Face before pushing!")
return
# Calculate grade
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
total_questions = len(user_answers)
grade = correct_count / total_questions if total_questions > 0 else 0
if grade < float(EXAM_PASSING_SCORE):
gr.Warning(
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
)
return f"You scored {grade:.1%}. Please try again to achieve at least {float(EXAM_PASSING_SCORE):.1%}"
gr.Info("Submitting answers to the Hub. Please wait...", duration=2)
user_info = whoami(token=token.token)
repo_id = f"{EXAM_DATASET_ID}_student_responses"
submission_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_ds = Dataset.from_list(user_answers)
new_ds = new_ds.map(
lambda x: {
"username": user_info["name"],
"datetime": submission_time,
"grade": grade,
}
)
new_ds.push_to_hub(repo_id)
return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"
def handle_quiz(question_idx, user_answers, selected_answer, is_start):
"""
A single function that handles both 'Start' and 'Next' logic:
- If is_start=True, skip storing an answer and show the first question.
- Otherwise, store the last answer and move on.
- If we've reached the end, display results.
"""
# Hide the start button once the first question is shown
start_btn_update = gr.update(visible=False) if is_start else None
# If this is the first time (start=True), begin at question_idx=0
if is_start:
question_idx = 0
else:
# If not the very first question, store the user's last selection
if question_idx < len(quiz_data):
current_q = quiz_data[question_idx]
correct_reference = current_q["correct_answer"]
correct_reference = f"answer_{correct_reference}".lower()
is_correct = selected_answer == current_q[correct_reference]
user_answers.append(
{
"question": current_q["question"],
"selected_answer": selected_answer,
"correct_answer": current_q[correct_reference],
"is_correct": is_correct,
"correct_reference": correct_reference,
}
)
question_idx += 1
# If we've reached the end, show final results
if question_idx >= len(quiz_data):
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
grade = correct_count / len(user_answers)
results_text = (
f"**Quiz Complete!**\n\n"
f"Your score: {grade:.1%}\n"
f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n"
)
return (
"", # question_text becomes blank
gr.update(choices=[], visible=False),
f"{'βœ… Passed!' if grade >= float(EXAM_PASSING_SCORE) else '❌ Did not pass'}",
question_idx,
user_answers,
start_btn_update,
gr.update(value=results_text, visible=True), # show final_markdown
)
else:
# Otherwise, show the next question
q = quiz_data[question_idx]
updated_question = f"## Question {question_idx + 1} \n### {q['question']}"
return (
updated_question,
gr.update(
choices=[
q["answer_a"],
q["answer_b"],
q["answer_c"],
q["answer_d"],
],
value=None,
visible=True,
),
"Select an answer and click 'Next' to continue.",
question_idx,
user_answers,
start_btn_update,
gr.update(visible=False), # Hide final_markdown for now
)
def success_message(response):
# response is whatever push_results_to_hub returned
return f"{response}\n\n**Success!**"
with gr.Blocks() as demo:
demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}"
# State variables
question_idx = gr.State(value=0)
user_answers = gr.State(value=[])
with gr.Row(variant="compact"):
gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz")
with gr.Row(variant="compact"):
gr.Markdown(
"Log in first, then click 'Start' to begin. Answer each question, click 'Next', and finally click 'Submit' to publish your results to the Hugging Face Hub."
)
# We display question text with Markdown
with gr.Row(
variant="panel",
):
question_text = gr.Markdown("")
radio_choices = gr.Radio(
choices=["None"], value="None", visible=False, label="Your Answer", scale=1.5
)
with gr.Row(variant="compact"):
status_text = gr.Markdown("")
with gr.Row(variant="compact"):
# Final results after all questions are done
final_markdown = gr.Markdown("", visible=False)
next_btn = gr.Button("Next ⏭️")
submit_btn = gr.Button("Submit βœ…")
with gr.Row(variant="compact"):
login_btn = gr.LoginButton()
# We'll hide the Start button until user logs in
start_btn = gr.Button("Start", visible=False)
# Use click() instead of login()
login_btn.click(fn=on_user_logged_in, inputs=None, outputs=[login_btn, start_btn]).then(
fn=handle_quiz,
inputs=[question_idx, user_answers, radio_choices, gr.State(True)],
outputs=[
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
start_btn,
final_markdown,
],
)
# Click "Start" => show first question, hide Start button
start_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, radio_choices, gr.State(True)],
outputs=[
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
start_btn,
final_markdown,
],
).then(lambda x:x, user_answers)
# Click "Next" => store selection, move on
next_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, radio_choices, gr.State(False)],
outputs=[
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
start_btn,
final_markdown,
],
).then(lambda x:x, user_answers)
submit_btn.click(fn=push_results_to_hub, inputs=[user_answers])
if __name__ == "__main__":
# Note: If testing locally, you'll need to run `huggingface-cli login` or set HF_TOKEN
# environment variable for the login to work locally.
demo.launch()