Spaces:
Running
Running
import os | |
import torch | |
import random | |
import diffusers | |
import torch.utils | |
import unet.utils as utils | |
from unet.unet_controller import UNetController | |
import argparse | |
from datetime import datetime | |
diffusers.utils.logging.set_verbosity_error() | |
def load_unet_controller(pipe, device): | |
unet_controller = UNetController() | |
unet_controller.device = device | |
unet_controller.tokenizer = pipe.tokenizer | |
return unet_controller | |
def generate_images(unet_controller: UNetController, pipe, id_prompt, frame_prompt_list, save_dir, window_length, seed, verbose=True): | |
generate = torch.Generator().manual_seed(seed) | |
if unet_controller.Use_ipca is True: | |
unet_controller.Store_qkv = True | |
original_prompt_embeds_mode = unet_controller.Prompt_embeds_mode | |
unet_controller.Prompt_embeds_mode = "original" | |
_ = pipe(id_prompt, generator=generate, unet_controller=unet_controller).images | |
unet_controller.Prompt_embeds_mode = original_prompt_embeds_mode | |
unet_controller.Store_qkv = False | |
images, story_image = utils.movement_gen_story_slide_windows( | |
id_prompt, frame_prompt_list, pipe, window_length, seed, unet_controller, save_dir, verbose=verbose | |
) | |
return images, story_image | |
def main(device, model_path, save_dir, id_prompt, frame_prompt_list, precision, seed, window_length): | |
pipe, _ = utils.load_pipe_from_path(model_path, device, torch.float16 if precision == "fp16" else torch.float32, precision) | |
unet_controller = load_unet_controller(pipe, device) | |
images, story_image = generate_images(unet_controller, pipe, id_prompt, frame_prompt_list, save_dir, window_length, seed) | |
return images, story_image | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Generate images using a specific device.") | |
parser.add_argument('--device', type=str, default='cuda:0', help='Device to use for computation (e.g., cuda:0, cpu)') | |
parser.add_argument('--model_path', type=str, default='playgroundai/playground-v2.5-1024px-aesthetic', help='Path to the model') | |
parser.add_argument('--project_base_path', type=str, default='.', help='Path to save the generated images') | |
parser.add_argument('--id_prompt', type=str, default="A photo of a red fox with coat", help='Initial prompt for image generation') | |
parser.add_argument('--frame_prompt_list', type=str, nargs='+', default=[ | |
"wearing a scarf in a meadow", | |
"playing in the snow", | |
"at the edge of a village with river", | |
], help='List of frame prompts') | |
parser.add_argument('--precision', type=str, choices=["fp16", "fp32"], default="fp16", help='Model precision') | |
parser.add_argument('--seed', type=int, default=42, help='Random seed for generation') | |
parser.add_argument('--window_length', type=int, default=10, help='Window length for story generation') | |
parser.add_argument('--save_padding', type=str, default='test', help='Padding for save directory') | |
parser.add_argument('--random_seed', action='store_true', help='Use random seed') | |
parser.add_argument('--json_path', type=str,) | |
args = parser.parse_args() | |
if args.random_seed: | |
args.seed = random.randint(0, 1000000) | |
current_time = datetime.now().strftime("%Y%m%d%H") | |
current_time_ = datetime.now().strftime("%M%S") | |
save_dir = os.path.join(args.project_base_path, f'result/{current_time}/{current_time_}_{args.save_padding}_seed{args.seed}') | |
os.makedirs(save_dir, exist_ok=True) | |
if args.json_path is None: | |
id_prompt = "A cinematic portrait of a man and a woman standing together" | |
frame_prompt_list = [ | |
"under a sky full of stars", | |
"on a bustling city street at night", | |
"in a dimly lit jazz club", | |
"walking along a sandy beach at sunset", | |
"in a cozy coffee shop with large windows", | |
"in a vibrant art gallery surrounded by paintings", | |
"under an umbrella during a soft rain", | |
"on a quiet park bench amidst falling leaves", | |
"standing on a rooftop overlooking the city skyline" | |
] | |
main(args.device, args.model_path, save_dir, id_prompt, frame_prompt_list, args.precision, args.seed, args.window_length) | |
else: | |
import json | |
with open(args.json_path, "r") as file: | |
data = json.load(file) | |
combinations = data["combinations"] | |
for combo in combinations: | |
main(args.device, args.model_path, save_dir, combo['id_prompt'], combo['frame_prompt_list'], args.precision, args.seed, args.window_length) | |