1Prompt1Story / main.py
byliutao's picture
Upload folder using huggingface_hub
31c1396 verified
import os
import torch
import random
import diffusers
import torch.utils
import unet.utils as utils
from unet.unet_controller import UNetController
import argparse
from datetime import datetime
diffusers.utils.logging.set_verbosity_error()
def load_unet_controller(pipe, device):
unet_controller = UNetController()
unet_controller.device = device
unet_controller.tokenizer = pipe.tokenizer
return unet_controller
def generate_images(unet_controller: UNetController, pipe, id_prompt, frame_prompt_list, save_dir, window_length, seed, verbose=True):
generate = torch.Generator().manual_seed(seed)
if unet_controller.Use_ipca is True:
unet_controller.Store_qkv = True
original_prompt_embeds_mode = unet_controller.Prompt_embeds_mode
unet_controller.Prompt_embeds_mode = "original"
_ = pipe(id_prompt, generator=generate, unet_controller=unet_controller).images
unet_controller.Prompt_embeds_mode = original_prompt_embeds_mode
unet_controller.Store_qkv = False
images, story_image = utils.movement_gen_story_slide_windows(
id_prompt, frame_prompt_list, pipe, window_length, seed, unet_controller, save_dir, verbose=verbose
)
return images, story_image
def main(device, model_path, save_dir, id_prompt, frame_prompt_list, precision, seed, window_length):
pipe, _ = utils.load_pipe_from_path(model_path, device, torch.float16 if precision == "fp16" else torch.float32, precision)
unet_controller = load_unet_controller(pipe, device)
images, story_image = generate_images(unet_controller, pipe, id_prompt, frame_prompt_list, save_dir, window_length, seed)
return images, story_image
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate images using a specific device.")
parser.add_argument('--device', type=str, default='cuda:0', help='Device to use for computation (e.g., cuda:0, cpu)')
parser.add_argument('--model_path', type=str, default='playgroundai/playground-v2.5-1024px-aesthetic', help='Path to the model')
parser.add_argument('--project_base_path', type=str, default='.', help='Path to save the generated images')
parser.add_argument('--id_prompt', type=str, default="A photo of a red fox with coat", help='Initial prompt for image generation')
parser.add_argument('--frame_prompt_list', type=str, nargs='+', default=[
"wearing a scarf in a meadow",
"playing in the snow",
"at the edge of a village with river",
], help='List of frame prompts')
parser.add_argument('--precision', type=str, choices=["fp16", "fp32"], default="fp16", help='Model precision')
parser.add_argument('--seed', type=int, default=42, help='Random seed for generation')
parser.add_argument('--window_length', type=int, default=10, help='Window length for story generation')
parser.add_argument('--save_padding', type=str, default='test', help='Padding for save directory')
parser.add_argument('--random_seed', action='store_true', help='Use random seed')
parser.add_argument('--json_path', type=str,)
args = parser.parse_args()
if args.random_seed:
args.seed = random.randint(0, 1000000)
current_time = datetime.now().strftime("%Y%m%d%H")
current_time_ = datetime.now().strftime("%M%S")
save_dir = os.path.join(args.project_base_path, f'result/{current_time}/{current_time_}_{args.save_padding}_seed{args.seed}')
os.makedirs(save_dir, exist_ok=True)
if args.json_path is None:
id_prompt = "A cinematic portrait of a man and a woman standing together"
frame_prompt_list = [
"under a sky full of stars",
"on a bustling city street at night",
"in a dimly lit jazz club",
"walking along a sandy beach at sunset",
"in a cozy coffee shop with large windows",
"in a vibrant art gallery surrounded by paintings",
"under an umbrella during a soft rain",
"on a quiet park bench amidst falling leaves",
"standing on a rooftop overlooking the city skyline"
]
main(args.device, args.model_path, save_dir, id_prompt, frame_prompt_list, args.precision, args.seed, args.window_length)
else:
import json
with open(args.json_path, "r") as file:
data = json.load(file)
combinations = data["combinations"]
for combo in combinations:
main(args.device, args.model_path, save_dir, combo['id_prompt'], combo['frame_prompt_list'], args.precision, args.seed, args.window_length)