1Prompt1Story / unet /unet.py
byliutao's picture
Upload folder using huggingface_hub
31c1396 verified
# modified from the https://github.com/cloneofsimo/minSDXL
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from diffusers.models.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin
from typing import Optional
from unet.unet_controller import UNetController
import unet.utils as utils
# SDXL
class Timesteps(nn.Module):
def __init__(self, num_channels: int = 320):
super().__init__()
self.num_channels = num_channels
def forward(self, timesteps):
half_dim = self.num_channels // 2
exponent = -math.log(10000) * torch.arange(
half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - 0.0)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
sin_emb = torch.sin(emb)
cos_emb = torch.cos(emb)
emb = torch.cat([cos_emb, sin_emb], dim=-1)
return emb
class TimestepEmbedding(nn.Module):
def __init__(self, in_features, out_features):
super(TimestepEmbedding, self).__init__()
self.linear_1 = nn.Linear(in_features, out_features, bias=True)
self.act = nn.SiLU()
self.linear_2 = nn.Linear(out_features, out_features, bias=True)
def forward(self, sample):
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class ResnetBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, conv_shortcut=True):
super(ResnetBlock2D, self).__init__()
self.norm1 = nn.GroupNorm(32, in_channels, eps=1e-05, affine=True)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.time_emb_proj = nn.Linear(1280, out_channels, bias=True)
self.norm2 = nn.GroupNorm(32, out_channels, eps=1e-05, affine=True)
self.dropout = nn.Dropout(p=0.0, inplace=False)
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.nonlinearity = nn.SiLU()
self.conv_shortcut = None
if conv_shortcut:
self.conv_shortcut = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1
)
def forward(self, input_tensor, temb):
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
temb = self.nonlinearity(temb)
temb = self.time_emb_proj(temb)[:, :, None, None]
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = input_tensor + hidden_states
return output_tensor
class Attention(nn.Module):
def __init__(
self, inner_dim, cross_attention_dim=None, num_heads=None, dropout=0.0
):
super(Attention, self).__init__()
if num_heads is None:
self.head_dim = 64
self.num_heads = inner_dim // self.head_dim
else:
self.num_heads = num_heads
self.head_dim = inner_dim // num_heads
self.scale = self.head_dim**-0.5
if cross_attention_dim is None:
cross_attention_dim = inner_dim
self.to_q = nn.Linear(inner_dim, inner_dim, bias=False)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False)
self.to_out = nn.ModuleList(
[nn.Linear(inner_dim, inner_dim), nn.Dropout(dropout, inplace=False)]
)
def forward(self, hidden_states, encoder_hidden_states=None, unet_controller: Optional[UNetController] = None):
q = self.to_q(hidden_states)
k = (
self.to_k(encoder_hidden_states)
if encoder_hidden_states is not None
else self.to_k(hidden_states)
)
v = (
self.to_v(encoder_hidden_states)
if encoder_hidden_states is not None
else self.to_v(hidden_states)
)
b, t, c = q.size()
q = q.view(q.size(0), q.size(1), self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(k.size(0), k.size(1), self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(v.size(0), v.size(1), self.num_heads, self.head_dim).transpose(1, 2)
if (unet_controller is not None and unet_controller.Use_ipca and unet_controller.current_unet_position in unet_controller.Ipca_position
and encoder_hidden_states is not None and unet_controller.current_time_step >= unet_controller.Ipca_start_step):
if unet_controller.do_classifier_free_guidance is True:
scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
attn_weights = torch.softmax(scores, dim=-1) # this is only used by cross_attn_map store
ipca_attn_output = utils.ipca2(q,k,v,self.scale,unet_controller=unet_controller)
attn_output = ipca_attn_output
else:
exit("current doesn't support cfg=1.0")
else:
scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
attn_weights = torch.softmax(scores, dim=-1)
attn_output = torch.matmul(attn_weights, v)
attn_output = attn_output.transpose(1, 2).contiguous().view(b, t, c)
for layer in self.to_out:
attn_output = layer(attn_output)
return attn_output
class GEGLU(nn.Module):
def __init__(self, in_features, out_features):
super(GEGLU, self).__init__()
self.proj = nn.Linear(in_features, out_features * 2, bias=True)
def forward(self, x):
x_proj = self.proj(x)
x1, x2 = x_proj.chunk(2, dim=-1)
return x1 * torch.nn.functional.gelu(x2)
class FeedForward(nn.Module):
def __init__(self, in_features, out_features):
super(FeedForward, self).__init__()
self.net = nn.ModuleList(
[
GEGLU(in_features, out_features * 4),
nn.Dropout(p=0.0, inplace=False),
nn.Linear(out_features * 4, out_features, bias=True),
]
)
def forward(self, x):
for layer in self.net:
x = layer(x)
return x
class BasicTransformerBlock(nn.Module):
def __init__(self, hidden_size):
super(BasicTransformerBlock, self).__init__()
self.norm1 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
self.attn1 = Attention(hidden_size)
self.norm2 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
self.attn2 = Attention(hidden_size, 2048)
self.norm3 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
self.ff = FeedForward(hidden_size, hidden_size)
def forward(self, x, encoder_hidden_states=None, unet_controller: Optional[UNetController] = None):
residual = x
x = self.norm1(x)
x = self.attn1(x, unet_controller=unet_controller,)
x = x + residual
residual = x
x = self.norm2(x)
if encoder_hidden_states is not None:
x = self.attn2(x, encoder_hidden_states, unet_controller=unet_controller,)
else:
x = self.attn2(x, unet_controller=unet_controller,)
x = x + residual
residual = x
x = self.norm3(x)
x = self.ff(x)
x = x + residual
return x
class Transformer2DModel(nn.Module):
def __init__(self, in_channels, out_channels, n_layers):
super(Transformer2DModel, self).__init__()
self.norm = nn.GroupNorm(32, in_channels, eps=1e-06, affine=True)
self.proj_in = nn.Linear(in_channels, out_channels, bias=True)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(out_channels) for _ in range(n_layers)]
)
self.proj_out = nn.Linear(out_channels, out_channels, bias=True)
def forward(self, hidden_states, encoder_hidden_states=None, unet_controller: Optional[UNetController] = None):
batch, _, height, width = hidden_states.shape
res = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
hidden_states = self.proj_in(hidden_states)
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states, unet_controller=unet_controller,)
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
return hidden_states + res
class Downsample2D(nn.Module):
def __init__(self, in_channels, out_channels):
super(Downsample2D, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=2, padding=1
)
def forward(self, x):
return self.conv(x)
class Upsample2D(nn.Module):
def __init__(self, in_channels, out_channels):
super(Upsample2D, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
return self.conv(x)
class DownBlock2D(nn.Module):
def __init__(self, in_channels, out_channels):
super(DownBlock2D, self).__init__()
self.resnets = nn.ModuleList(
[
ResnetBlock2D(in_channels, out_channels, conv_shortcut=False),
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
]
)
self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)])
def forward(self, hidden_states, temb):
output_states = []
for module in self.resnets:
hidden_states = module(hidden_states, temb)
output_states.append(hidden_states)
hidden_states = self.downsamplers[0](hidden_states)
output_states.append(hidden_states)
return hidden_states, output_states
class CrossAttnDownBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, n_layers, has_downsamplers=True):
super(CrossAttnDownBlock2D, self).__init__()
self.attentions = nn.ModuleList(
[
Transformer2DModel(out_channels, out_channels, n_layers),
Transformer2DModel(out_channels, out_channels, n_layers),
]
)
self.resnets = nn.ModuleList(
[
ResnetBlock2D(in_channels, out_channels),
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
]
)
self.downsamplers = None
if has_downsamplers:
self.downsamplers = nn.ModuleList(
[Downsample2D(out_channels, out_channels)]
)
def forward(self, hidden_states, temb, encoder_hidden_states, unet_controller: Optional[UNetController] = None):
output_states = []
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
unet_controller=unet_controller,
)
output_states.append(hidden_states)
if self.downsamplers is not None:
hidden_states = self.downsamplers[0](hidden_states)
output_states.append(hidden_states)
return hidden_states, output_states
class CrossAttnUpBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, prev_output_channel, n_layers):
super(CrossAttnUpBlock2D, self).__init__()
self.attentions = nn.ModuleList(
[
Transformer2DModel(out_channels, out_channels, n_layers),
Transformer2DModel(out_channels, out_channels, n_layers),
Transformer2DModel(out_channels, out_channels, n_layers),
]
)
self.resnets = nn.ModuleList(
[
ResnetBlock2D(prev_output_channel + out_channels, out_channels),
ResnetBlock2D(2 * out_channels, out_channels),
ResnetBlock2D(out_channels + in_channels, out_channels),
]
)
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)])
def forward(
self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states, unet_controller: Optional[UNetController] = None,
):
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
if unet_controller is not None and unet_controller.Is_freeu_enabled:
hidden_states, res_hidden_states = utils.apply_freeu(
0 if unet_controller.current_unet_position == 'up0' else 1,
hidden_states,
res_hidden_states,
s1=unet_controller.Freeu_parm['s1'],
s2=unet_controller.Freeu_parm['s2'],
b1=unet_controller.Freeu_parm['b1'],
b2=unet_controller.Freeu_parm['b2'],
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
unet_controller=unet_controller,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class UpBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, prev_output_channel):
super(UpBlock2D, self).__init__()
self.resnets = nn.ModuleList(
[
ResnetBlock2D(out_channels + prev_output_channel, out_channels),
ResnetBlock2D(out_channels * 2, out_channels),
ResnetBlock2D(out_channels + in_channels, out_channels),
]
)
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
for resnet in self.resnets:
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
return hidden_states
class UNetMidBlock2DCrossAttn(nn.Module):
def __init__(self, in_features):
super(UNetMidBlock2DCrossAttn, self).__init__()
self.attentions = nn.ModuleList(
[Transformer2DModel(in_features, in_features, n_layers=10)]
)
self.resnets = nn.ModuleList(
[
ResnetBlock2D(in_features, in_features, conv_shortcut=False),
ResnetBlock2D(in_features, in_features, conv_shortcut=False),
]
)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, unet_controller: Optional[UNetController] = None):
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
unet_controller=unet_controller,
)
hidden_states = resnet(hidden_states, temb)
return hidden_states
class UNet2DConditionModel(ModelMixin, ConfigMixin):
def __init__(self):
super(UNet2DConditionModel, self).__init__() ## init child class first
# This is needed to imitate huggingface config behavior
# has nothing to do with the model itself
# remove this if you don't use diffuser's pipeline
# self.config = namedtuple(
# "config", "in_channels addition_time_embed_dim sample_size time_cond_proj_dim"
# )
# self.config.in_channels = 4
# self.config.addition_time_embed_dim = 256
# self.config.sample_size = 128
# self.config.time_cond_proj_dim = None
self.conv_in = nn.Conv2d(4, 320, kernel_size=3, stride=1, padding=1)
self.time_proj = Timesteps()
self.time_embedding = TimestepEmbedding(in_features=320, out_features=1280)
self.add_time_proj = Timesteps(256)
self.add_embedding = TimestepEmbedding(in_features=2816, out_features=1280)
self.down_blocks = nn.ModuleList(
[
DownBlock2D(in_channels=320, out_channels=320),
CrossAttnDownBlock2D(in_channels=320, out_channels=640, n_layers=2),
CrossAttnDownBlock2D(
in_channels=640,
out_channels=1280,
n_layers=10,
has_downsamplers=False,
),
]
)
self.up_blocks = nn.ModuleList(
[
CrossAttnUpBlock2D(
in_channels=640,
out_channels=1280,
prev_output_channel=1280,
n_layers=10,
),
CrossAttnUpBlock2D(
in_channels=320,
out_channels=640,
prev_output_channel=1280,
n_layers=2,
),
UpBlock2D(in_channels=320, out_channels=320, prev_output_channel=640),
]
)
self.mid_block = UNetMidBlock2DCrossAttn(1280)
self.conv_norm_out = nn.GroupNorm(32, 320, eps=1e-05, affine=True)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(320, 4, kernel_size=3, stride=1, padding=1)
def forward(
self, sample, timesteps, encoder_hidden_states, added_cond_kwargs, unet_controller: Optional[UNetController] = None, **kwargs
):
# Implement the forward pass through the model
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps).to(dtype=sample.dtype)
emb = self.time_embedding(t_emb)
text_embeds = added_cond_kwargs.get("text_embeds")
time_ids = added_cond_kwargs.get("time_ids")
time_embeds = self.add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(emb.dtype)
aug_emb = self.add_embedding(add_embeds)
emb = emb + aug_emb
sample = self.conv_in(sample)
# 3. down
if unet_controller is not None:
unet_controller.current_unet_position = 'down0'
s0 = sample
sample, [s1, s2, s3] = self.down_blocks[0](
sample,
temb=emb,
)
if unet_controller is not None:
unet_controller.current_unet_position = 'down1'
# encoder_hidden_states is prompt_embedings, so here do cross_attn
sample, [s4, s5, s6] = self.down_blocks[1](
sample,
temb=emb, # time_embbeding
encoder_hidden_states=encoder_hidden_states, #[2,77,2048], 2 means two branch, 1 for prompt, 1 for negative prompt
unet_controller=unet_controller,
)
if unet_controller is not None:
unet_controller.current_unet_position = 'down2'
sample, [s7, s8] = self.down_blocks[2](
sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
unet_controller=unet_controller,
)
# 4. mid
if unet_controller is not None:
unet_controller.current_unet_position = 'mid'
sample = self.mid_block(
sample, emb, encoder_hidden_states=encoder_hidden_states, unet_controller=unet_controller,
)
# 5. up
if unet_controller is not None:
unet_controller.current_unet_position = 'up0'
sample = self.up_blocks[0](
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=[s6, s7, s8],
encoder_hidden_states=encoder_hidden_states,
unet_controller=unet_controller,
)
if unet_controller is not None:
unet_controller.current_unet_position = 'up1'
sample = self.up_blocks[1](
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=[s3, s4, s5],
encoder_hidden_states=encoder_hidden_states,
unet_controller=unet_controller,
)
if unet_controller is not None:
unet_controller.current_unet_position = 'up2'
sample = self.up_blocks[2](
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=[s0, s1, s2],
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return [sample]