import os import gc import gradio as gr import numpy as np import torch import json import spaces import config import utils import logging from PIL import Image, PngImagePlugin from datetime import datetime from diffusers.models import AutoencoderKL from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline from config import ( MODEL, MIN_IMAGE_SIZE, MAX_IMAGE_SIZE, USE_TORCH_COMPILE, ENABLE_CPU_OFFLOAD, OUTPUT_DIR, DEFAULT_NEGATIVE_PROMPT, DEFAULT_ASPECT_RATIO, examples, sampler_list, aspect_ratios, style_list, ) import time from typing import List, Dict, Tuple, Optional # Enhanced logging configuration logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) logger = logging.getLogger(__name__) # Constants IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" HF_TOKEN = os.getenv("HF_TOKEN") CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" # PyTorch settings for better performance and determinism torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.cuda.matmul.allow_tf32 = True device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") logger.info(f"Using device: {device}") class GenerationError(Exception): """Custom exception for generation errors""" pass def validate_prompt(prompt: str) -> str: """Validate and clean up the input prompt.""" if not isinstance(prompt, str): raise GenerationError("Prompt must be a string") try: # Ensure proper UTF-8 encoding/decoding prompt = prompt.encode('utf-8').decode('utf-8') # Add space between ! and , prompt = prompt.replace("!,", "! ,") except UnicodeError: raise GenerationError("Invalid characters in prompt") # Only check if the prompt is completely empty or only whitespace if not prompt or prompt.isspace(): raise GenerationError("Prompt cannot be empty") return prompt.strip() def validate_dimensions(width: int, height: int) -> None: """Validate image dimensions.""" if not MIN_IMAGE_SIZE <= width <= MAX_IMAGE_SIZE: raise GenerationError(f"Width must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}") if not MIN_IMAGE_SIZE <= height <= MAX_IMAGE_SIZE: raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}") @spaces.GPU def generate( prompt: str, negative_prompt: str = DEFAULT_NEGATIVE_PROMPT, seed: int = 0, custom_width: int = 1024, custom_height: int = 1024, guidance_scale: float = 6.0, num_inference_steps: int = 25, sampler: str = "Euler a", aspect_ratio_selector: str = DEFAULT_ASPECT_RATIO, style_selector: str = "(None)", use_upscaler: bool = False, upscaler_strength: float = 0.55, upscale_by: float = 1.5, add_quality_tags: bool = True, progress: gr.Progress = gr.Progress(track_tqdm=True), ) -> Tuple[List[str], Dict]: """Generate images based on the given parameters.""" start_time = time.time() upscaler_pipe = None backup_scheduler = None try: # Memory management torch.cuda.empty_cache() gc.collect() # Input validation prompt = validate_prompt(prompt) if negative_prompt: negative_prompt = negative_prompt.encode('utf-8').decode('utf-8') validate_dimensions(custom_width, custom_height) # Set up generation generator = utils.seed_everything(seed) width, height = utils.aspect_ratio_handler( aspect_ratio_selector, custom_width, custom_height, ) # Process prompts if add_quality_tags: prompt = "masterpiece, high score, great score, absurdres, {prompt}".format(prompt=prompt) prompt, negative_prompt = utils.preprocess_prompt( styles, style_selector, prompt, negative_prompt ) width, height = utils.preprocess_image_dimensions(width, height) # Set up pipeline backup_scheduler = pipe.scheduler pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler) if use_upscaler: upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components) # Prepare metadata metadata = { "prompt": prompt, "negative_prompt": negative_prompt, "resolution": f"{width} x {height}", "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "style_preset": style_selector, "seed": seed, "sampler": sampler, "Model": "Animagine XL 4.0", "Model hash": "e3c47aedb0", } if use_upscaler: new_width = int(width * upscale_by) new_height = int(height * upscale_by) metadata["use_upscaler"] = { "upscale_method": "nearest-exact", "upscaler_strength": upscaler_strength, "upscale_by": upscale_by, "new_resolution": f"{new_width} x {new_height}", } else: metadata["use_upscaler"] = None logger.info(f"Starting generation with parameters: {json.dumps(metadata, indent=4)}") # Generate images if use_upscaler: latents = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="latent", ).images upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by) images = upscaler_pipe( prompt=prompt, negative_prompt=negative_prompt, image=upscaled_latents, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, strength=upscaler_strength, generator=generator, output_type="pil", ).images else: images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="pil", ).images # Save images if images: total = len(images) image_paths = [] for idx, image in enumerate(images, 1): progress(idx/total, desc="Saving images...") path = utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB) image_paths.append(path) logger.info(f"Image {idx}/{total} saved as {path}") generation_time = time.time() - start_time logger.info(f"Generation completed successfully in {generation_time:.2f} seconds") metadata["generation_time"] = f"{generation_time:.2f}s" return image_paths, metadata except GenerationError as e: logger.warning(f"Generation validation error: {str(e)}") raise gr.Error(str(e)) except Exception as e: logger.exception("Unexpected error during generation") raise gr.Error(f"Generation failed: {str(e)}") finally: # Cleanup torch.cuda.empty_cache() gc.collect() if upscaler_pipe is not None: del upscaler_pipe if backup_scheduler is not None and pipe is not None: pipe.scheduler = backup_scheduler utils.free_memory() # Model initialization if torch.cuda.is_available(): try: logger.info("Loading VAE and pipeline...") vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, ) pipe = utils.load_pipeline(MODEL, device, vae=vae) logger.info("Pipeline loaded successfully on GPU!") except Exception as e: logger.error(f"Error loading VAE, falling back to default: {e}") pipe = utils.load_pipeline(MODEL, device) else: logger.warning("CUDA not available, running on CPU") pipe = None # Process styles styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} with gr.Blocks(css="style.css", theme="Nymbo/Nymbo_Theme_5") as demo: gr.HTML( """
ANIM4GINE
Gradio demo for Animagine XL 4.0
""", ) with gr.Row(): with gr.Column(scale=2): with gr.Group(): prompt = gr.Text( label="Prompt", max_lines=5, placeholder="Describe what you want to generate", info="Enter your image generation prompt here. Be specific and descriptive for better results.", ) negative_prompt = gr.Text( label="Negative Prompt", max_lines=5, placeholder="Describe what you want to avoid", value=DEFAULT_NEGATIVE_PROMPT, info="Specify elements you don't want in the image.", ) add_quality_tags = gr.Checkbox( label="Quality Tags", value=True, info="Add quality-enhancing tags to your prompt automatically.", ) with gr.Accordion(label="More Settings", open=False): with gr.Group(): aspect_ratio_selector = gr.Radio( label="Aspect Ratio", choices=aspect_ratios, value=DEFAULT_ASPECT_RATIO, container=True, info="Choose the dimensions of your image.", ) with gr.Group(visible=False) as custom_resolution: with gr.Row(): custom_width = gr.Slider( label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, info=f"Image width (must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE})", ) custom_height = gr.Slider( label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, info=f"Image height (must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE})", ) with gr.Group(): use_upscaler = gr.Checkbox( label="Use Upscaler", value=False, info="Enable high-resolution upscaling.", ) with gr.Row() as upscaler_row: upscaler_strength = gr.Slider( label="Strength", minimum=0, maximum=1, step=0.05, value=0.55, visible=False, info="Control how much the upscaler affects the final image.", ) upscale_by = gr.Slider( label="Upscale by", minimum=1, maximum=1.5, step=0.1, value=1.5, visible=False, info="Multiplier for the final image resolution.", ) with gr.Accordion(label="Advanced Parameters", open=False): with gr.Group(): style_selector = gr.Dropdown( label="Style Preset", interactive=True, choices=list(styles.keys()), value="(None)", info="Apply a predefined style to your generation.", ) with gr.Group(): sampler = gr.Dropdown( label="Sampler", choices=sampler_list, interactive=True, value="Euler a", info="Different samplers can produce varying results.", ) with gr.Group(): seed = gr.Slider( label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0, info="Set a specific seed for reproducible results.", ) randomize_seed = gr.Checkbox( label="Randomize seed", value=True, info="Generate a new random seed for each image.", ) with gr.Group(): with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=12, step=0.1, value=6.0, info="Higher values make the image more closely match your prompt.", ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=25, info="More steps generally mean higher quality but slower generation.", ) with gr.Column(scale=3): with gr.Blocks(): run_button = gr.Button("Generate", variant="primary", elem_id="generate-button") result = gr.Gallery( label="Generated Images", columns=1, height='768px', preview=True, show_label=True, ) with gr.Accordion(label="Generation Parameters", open=False): gr_metadata = gr.JSON( label="Image Metadata", show_label=True, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, gr_metadata], fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs), cache_examples=CACHE_EXAMPLES, ) # Discord button in a new full row with gr.Row(): gr.HTML( """ Join our Discord Server """ ) use_upscaler.change( fn=lambda x: [gr.update(visible=x), gr.update(visible=x)], inputs=use_upscaler, outputs=[upscaler_strength, upscale_by], queue=False, api_name=False, ) aspect_ratio_selector.change( fn=lambda x: gr.update(visible=x == "Custom"), inputs=aspect_ratio_selector, outputs=custom_resolution, queue=False, api_name=False, ) # Combine all triggers including keyboard shortcuts gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=lambda: gr.update(interactive=False, value="Generating..."), outputs=run_button, ).then( fn=generate, inputs=[ prompt, negative_prompt, seed, custom_width, custom_height, guidance_scale, num_inference_steps, sampler, aspect_ratio_selector, style_selector, use_upscaler, upscaler_strength, upscale_by, add_quality_tags, ], outputs=[result, gr_metadata], ).then( fn=lambda: gr.update(interactive=True, value="Generate"), outputs=run_button, ) if __name__ == "__main__": demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)