File size: 4,579 Bytes
2c9628e
d4d6f06
2c9628e
 
 
 
404f089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9628e
404f089
 
 
 
 
 
 
 
 
 
2c9628e
404f089
 
 
 
 
 
 
 
 
2c9628e
404f089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9628e
404f089
 
2c9628e
404f089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9628e
404f089
 
 
2c9628e
 
d4d6f06
 
2c9628e
 
404f089
2c9628e
404f089
2c9628e
404f089
 
d4d6f06
404f089
2c9628e
404f089
2c9628e
 
404f089
d4d6f06
2c9628e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import json
import pandas as pd
import gradio as gr
from content import *
from css import *

NONE_COL = "Ranking"
    
AGENT_COLS = ["Method", "Model" , "SS Easy", "SS Medium", "SS Hard", "MS Easy", "MS Meduium", "MS Hard", "Overall", NONE_COL]
AGENT_TYPES = ["str", "str", "number", "number", "number", "number", "number", "number", "number", "number" , "number"]
model_name_adic = {
    "qwen-plus": "Qwen-Plus",
    "qwen2.5-72b-instruct": "Qwen2.5-72B",
    "qwen2.5-7b-instruct": "Qwen2.5-7B",
    "qwen2.5-14b-instruct": "Qwen2.5-14B",
    "qwen2.5-32b-instruct": "Qwen2.5-32B",
    "gpt-4o": "GPT-4o",
}
method_name_adic = {
    "reflexion": "Relfexion",
    "react": "React",
    "seeker": "WebWalker",
}

rag_name_adic = {
    "kimi": "Kimi",
    "mindsearch": "MindSearch",
    "navie": "Navie RAG",
    "o1": "o1",
    "tongyi": "Tongyi",
    "wenxin": "ERNIE",
    "gemini": "Gemini",
    "gemini_search": "Gemini w/ Search",
    "doubao": "Doubao",
}
agent_ranking = []
with open("agents_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        agent_ranking.append([method_name_adic[item["method"]], model_name_adic[item["model"]], item["overall"]])
agent_ranking = sorted(agent_ranking, key=lambda x: x[2], reverse=False)
ranking_dict = {}
for i, (method, model, score) in enumerate(agent_ranking):
    ranking_dict[method+model] = i

agent_df = []
with open("agents_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        agent_df.append([method_name_adic[item["method"]], model_name_adic[item["model"]], 
                         f"{item['ss_easy'] * 100:.2f}",
                       f"{item['ss_medium'] * 100:.2f}",
                       f"{item['ss_hard'] * 100:.2f}",
                       f"{item['ms_easy'] * 100:.2f}",
                       f"{item['ms_medium'] * 100:.2f}",
                       f"{item['ms_hard'] * 100:.2f}",
                       f"{item['overall'] * 100:.2f}",
                       ranking_dict[method_name_adic[item["method"]] + model_name_adic[item["model"]]]])
agent_df = pd.DataFrame.from_records(agent_df, columns=AGENT_COLS)
agent_df = agent_df.sort_values(by=["Ranking"], ascending=False)
agent_df = agent_df[AGENT_COLS]

RAG_COLS = ["System", "SS Easy", "SS Medium", "SS Hard", "MS Easy", "MS Meduium", "MS Hard", "Overall", NONE_COL]
RAG_TYPES = ["str", "number", "number", "number", "number", "number", "number", "number", "number" , "number"]

rag_ranking = []
with open("rag_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        rag_ranking.append([rag_name_adic[item["system"]], item["overall"]])
rag_ranking = sorted(rag_ranking, key=lambda x: x[1], reverse=False)
ranking_dict = {}
for i, (system, score) in enumerate(rag_ranking):
    ranking_dict[system] = i
rag_df = []
with open("rag_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        rag_df.append([rag_name_adic[item["system"]],
                       f"{item['ss_easy'] * 100:.2f}",
                       f"{item['ss_medium'] * 100:.2f}",
                       f"{item['ss_hard'] * 100:.2f}",
                       f"{item['ms_easy'] * 100:.2f}",
                       f"{item['ms_medium'] * 100:.2f}",
                       f"{item['ms_hard'] * 100:.2f}",
                       f"{item['overall'] * 100:.2f}",
                       ranking_dict[rag_name_adic[item["system"]]]])

rag_df = pd.DataFrame.from_records(rag_df, columns=RAG_COLS)
rag_df = rag_df.sort_values(by=["Ranking"], ascending=False)
rag_df = rag_df[RAG_COLS]

demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
    gr.Markdown(HOW_TO, elem_classes="markdown-text")
    gr.Markdown("## Leaderboard")
    with gr.Group():
        with gr.Tab("Results: Agent 🤖️"):
            leaderboard_table_test = gr.components.Dataframe(
                value=agent_df, datatype=AGENT_TYPES, interactive=False,
                column_widths = ["20%"] * len(agent_df.columns)
            )
        with gr.Tab("Results: RAG-system 🔍"):
            leaderboard_table_val = gr.components.Dataframe(
                value=rag_df, datatype=RAG_TYPES, interactive=False,
                column_widths=["20%"] 
        )
    gr.Markdown("SS denotes single-source, and MS denotes multi-source. Easy, Medium, and Hard denote the difficulty level of the question.")

    gr.Markdown(CREDIT, elem_classes="markdown-text")
    gr.Markdown(CITATION, elem_classes="markdown-text")

demo.launch(share=True)