File size: 1,642 Bytes
eb1522b
 
 
9f56bc0
 
0a1c65b
9f56bc0
 
0a1c65b
9f56bc0
 
 
 
0a1c65b
9f56bc0
 
 
0a1c65b
dc1f5e4
9f56bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1c65b
eb1522b
9f56bc0
 
 
dc1f5e4
9f56bc0
eb1522b
0a1c65b
eb1522b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import gradio as gr
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import io
import sys

def test_eos_pad():
    raw_text_batch = 'a'

    # Capture print statements
    old_stdout = sys.stdout
    new_stdout = io.StringIO()
    sys.stdout = new_stdout

    # Load the processor and model for the NbAiLab Whisper model
    processor = AutoProcessor.from_pretrained("NbAiLab/nb-whisper-large-verbatim")
    model = AutoModelForSpeechSeq2Seq.from_pretrained("NbAiLab/nb-whisper-large-verbatim")

    # Check if pad token is set, if not, set it to eos token
    if processor.tokenizer.pad_token_id is None:
        processor.tokenizer.pad_token = processor.tokenizer.eos_token

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)

    print(f'{processor.tokenizer.eos_token=}')
    print(f'{processor.tokenizer.eos_token_id=}')
    print(f'{processor.tokenizer.pad_token=}')
    print(f'{processor.tokenizer.pad_token_id=}')

    # Tokenize the input batch
    tokenize_batch = processor.tokenizer(raw_text_batch, padding="max_length", max_length=5, truncation=True, return_tensors="pt")
    print(f'{tokenize_batch=}')
    print('Done')

    # Restore the original stdout and return the captured output
    sys.stdout = old_stdout
    output = new_stdout.getvalue()
    return output

iface = gr.Interface(
    fn=test_eos_pad,
    inputs=[],
    outputs=gr.Textbox(label="Results"),
    title="Check EOS and PAD Tokens",
    description="This Gradio interface displays the output of the test_eos_pad function."
)

if __name__ == "__main__":
    iface.launch()