File size: 5,815 Bytes
be1f39f d837f95 7b26205 fc86a8c 7f721d2 fc86a8c 28ccd64 d837f95 681a5c2 0712e72 84ad3fa 2e34be4 649c1e6 28ccd64 5c2d16e be1f39f 7f721d2 be1f39f d55e9be 7f721d2 be1f39f 3999e7c b371097 3999e7c bf68d2b b600572 e8e8cf3 bf68d2b 3999e7c 73ee177 7f721d2 3999e7c 3ad696e 3999e7c b26141b 3999e7c 649c1e6 3999e7c 0f7c92d e8b8b3e 649c1e6 3999e7c 7f721d2 be1f39f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from langchain_community.llms import CTransformers
from ctransformers import AutoModelForCausalLM
from langchain.agents import Tool
from langchain.agents import AgentType, initialize_agent
from langchain.chains import RetrievalQA
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
import tempfile
import os
import streamlit as st
import timeit
from langchain.callbacks.tracers import ConsoleCallbackHandler
# tt
def main():
FILE_LOADER_MAPPING = {
"pdf": (PyPDFLoader, {})
# Add more mappings for other file extensions and loaders as needed
}
st.title("Document Comparison with Q&A using Agents")
# Upload files
uploaded_files = st.file_uploader("Upload your documents", type=["pdf"], accept_multiple_files=True)
loaded_documents = []
if uploaded_files:
# Create a temporary directory
with tempfile.TemporaryDirectory() as td:
# Move the uploaded files to the temporary directory and process them
for uploaded_file in uploaded_files:
st.write(f"Uploaded: {uploaded_file.name}")
ext = os.path.splitext(uploaded_file.name)[-1][1:].lower()
st.write(f"Uploaded: {ext}")
# Check if the extension is in FILE_LOADER_MAPPING
if ext in FILE_LOADER_MAPPING:
loader_class, loader_args = FILE_LOADER_MAPPING[ext]
# st.write(f"loader_class: {loader_class}")
# Save the uploaded file to the temporary directory
file_path = os.path.join(td, uploaded_file.name)
with open(file_path, 'wb') as temp_file:
temp_file.write(uploaded_file.read())
# Use Langchain loader to process the file
loader = loader_class(file_path, **loader_args)
loaded_documents.extend(loader.load())
else:
st.warning(f"Unsupported file extension: {ext}, the app currently only supports pdf")
st.write("Ask question to get comparison from the documents:")
query = st.text_input("Ask a question:")
if st.button("Get Answer"):
if query:
# Load model, set prompts, create vector database, and retrieve answer
try:
start = timeit.default_timer()
# config = {
# 'max_new_tokens': 1024,
# 'repetition_penalty': 1.1,
# 'temperature': 0.1,
# 'top_k': 50,
# 'top_p': 0.9,
# 'stream': True,
# 'threads': int(os.cpu_count() / 2)
# }
llm = CTransformers(
# model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
model= "TheBloke/Llama-2-7B-Chat-GGUF",
model_file = "llama-2-7b-chat.Q3_K_S.gguf",
model_type="llama",
max_new_tokens = 300,
temperature = 0.3,
lib="avx2", # for CPU
)
# llm = AutoModelForCausalLM.from_pretrained("second-state/stablelm-2-zephyr-1.6b-GGUF", model_type="stablelm-2-zephyr-1_6b-Q4_0.gguf")
print("LLM Initialized...")
model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
chunked_documents = text_splitter.split_documents(loaded_documents)
retriever = FAISS.from_documents(chunked_documents, embeddings).as_retriever()
# Wrap retrievers in a Tool
tools = []
tools.append(
Tool(
name="Comparison tool",
description="useful when you want to answer questions about the uploaded documents",
func=RetrievalQA.from_chain_type(llm=llm, retriever=retriever),
)
)
agent = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
# response = agent.run(query)
end = timeit.default_timer()
st.write("Elapsed time:")
st.write(end - start)
st.write("Bot Response:")
# st.write(agent.invoke(query, config={"callbacks":[ConsoleCallbackHandler()]}))
st.write(agent.run({"input": query}))
# st.write(response)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
st.warning("Please enter a question.")
if __name__ == "__main__":
main()
|