Spaces:
Sleeping
Sleeping
File size: 2,314 Bytes
baa3952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import streamlit as st
import os
from groq import Groq
import random
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain_groq import ChatGroq
from langchain.prompts import PromptTemplate
def main():
"""
This function is the main entry point of the application. It sets up the Groq client, the Streamlit interface, and handles the chat interaction.
"""
# Get Groq API key
groq_api_key = os.environ['GROQ_API_KEY']
# Display the Groq logo
spacer, col = st.columns([5, 1])
with col:
st.image('groqcloud_darkmode.png')
# The title and greeting message of the Streamlit application
st.title("Chat with Groq!")
st.write("Hello! I'm your friendly Groq chatbot. I can help answer your questions, provide information, or just chat. I'm also super fast! Let's start our conversation!")
# Add customization options to the sidebar
st.sidebar.title('Customization')
model = st.sidebar.selectbox(
'Choose a model',
['mixtral-8x7b-32768', 'llama2-70b-4096']
)
conversational_memory_length = st.sidebar.slider('Conversational memory length:', 1, 10, value = 5)
memory=ConversationBufferWindowMemory(k=conversational_memory_length)
user_question = st.text_input("Ask a question:")
# session state variable
if 'chat_history' not in st.session_state:
st.session_state.chat_history=[]
else:
for message in st.session_state.chat_history:
memory.save_context({'input':message['human']},{'output':message['AI']})
# Initialize Groq Langchain chat object and conversation
groq_chat = ChatGroq(
groq_api_key=groq_api_key,
model_name=model
)
conversation = ConversationChain(
llm=groq_chat,
memory=memory
)
# If the user has asked a question,
if user_question:
# The chatbot's answer is generated by sending the full prompt to the Groq API.
response = conversation(user_question)
message = {'human':user_question,'AI':response['response']}
st.session_state.chat_history.append(message)
st.write("Chatbot:", response['response'])
if __name__ == "__main__":
main() |