Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from PIL import Image | |
import pymeshlab | |
import pymeshlab as ml | |
from pymeshlab import PercentageValue | |
from pytorch3d.renderer import TexturesVertex | |
from pytorch3d.structures import Meshes | |
from rembg import new_session, remove | |
import torch | |
import torch.nn.functional as F | |
from typing import List, Tuple | |
from PIL import Image | |
import trimesh | |
providers = [ | |
('CUDAExecutionProvider', { | |
'device_id': 0, | |
'arena_extend_strategy': 'kSameAsRequested', | |
'gpu_mem_limit': 8 * 1024 * 1024 * 1024, | |
'cudnn_conv_algo_search': 'HEURISTIC', | |
}) | |
] | |
session = new_session(providers=providers) | |
NEG_PROMPT="sketch, sculpture, hand drawing, outline, single color, NSFW, lowres, bad anatomy,bad hands, text, error, missing fingers, yellow sleeves, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,(worst quality:1.4),(low quality:1.4)" | |
def load_mesh_with_trimesh(file_name, file_type=None): | |
import trimesh | |
mesh: trimesh.Trimesh = trimesh.load(file_name, file_type=file_type) | |
if isinstance(mesh, trimesh.Scene): | |
assert len(mesh.geometry) > 0 | |
# save to obj first and load again to avoid offset issue | |
from io import BytesIO | |
with BytesIO() as f: | |
mesh.export(f, file_type="obj") | |
f.seek(0) | |
mesh = trimesh.load(f, file_type="obj") | |
if isinstance(mesh, trimesh.Scene): | |
# we lose texture information here | |
mesh = trimesh.util.concatenate( | |
tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces) | |
for g in mesh.geometry.values())) | |
assert isinstance(mesh, trimesh.Trimesh) | |
vertices = torch.from_numpy(mesh.vertices).T | |
faces = torch.from_numpy(mesh.faces).T | |
colors = None | |
if mesh.visual is not None: | |
if hasattr(mesh.visual, 'vertex_colors'): | |
colors = torch.from_numpy(mesh.visual.vertex_colors)[..., :3].T / 255. | |
if colors is None: | |
# print("Warning: no vertex color found in mesh! Filling it with gray.") | |
colors = torch.ones_like(vertices) * 0.5 | |
return vertices, faces, colors | |
def meshlab_mesh_to_py3dmesh(mesh: pymeshlab.Mesh) -> Meshes: | |
verts = torch.from_numpy(mesh.vertex_matrix()).float() | |
faces = torch.from_numpy(mesh.face_matrix()).long() | |
colors = torch.from_numpy(mesh.vertex_color_matrix()[..., :3]).float() | |
textures = TexturesVertex(verts_features=[colors]) | |
return Meshes(verts=[verts], faces=[faces], textures=textures) | |
def py3dmesh_to_meshlab_mesh(meshes: Meshes) -> pymeshlab.Mesh: | |
colors_in = F.pad(meshes.textures.verts_features_packed().cpu().float(), [0,1], value=1).numpy().astype(np.float64) | |
m1 = pymeshlab.Mesh( | |
vertex_matrix=meshes.verts_packed().cpu().float().numpy().astype(np.float64), | |
face_matrix=meshes.faces_packed().cpu().long().numpy().astype(np.int32), | |
v_normals_matrix=meshes.verts_normals_packed().cpu().float().numpy().astype(np.float64), | |
v_color_matrix=colors_in) | |
return m1 | |
def to_pyml_mesh(vertices,faces): | |
m1 = pymeshlab.Mesh( | |
vertex_matrix=vertices.cpu().float().numpy().astype(np.float64), | |
face_matrix=faces.cpu().long().numpy().astype(np.int32), | |
) | |
return m1 | |
def to_py3d_mesh(vertices, faces, normals=None): | |
from pytorch3d.structures import Meshes | |
from pytorch3d.renderer.mesh.textures import TexturesVertex | |
mesh = Meshes(verts=[vertices], faces=[faces], textures=None) | |
if normals is None: | |
normals = mesh.verts_normals_packed() | |
# set normals as vertext colors | |
mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5]) | |
return mesh | |
def from_py3d_mesh(mesh): | |
return mesh.verts_list()[0], mesh.faces_list()[0], mesh.textures.verts_features_packed() | |
def rotate_normalmap_by_angle(normal_map: np.ndarray, angle: float): | |
""" | |
rotate along y-axis | |
normal_map: np.array, shape=(H, W, 3) in [-1, 1] | |
angle: float, in degree | |
""" | |
angle = angle / 180 * np.pi | |
R = np.array([[np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)]]) | |
return np.dot(normal_map.reshape(-1, 3), R.T).reshape(normal_map.shape) | |
# from view coord to front view world coord | |
def rotate_normals(normal_pils, return_types='np', rotate_direction=1) -> np.ndarray: # [0, 255] | |
n_views = len(normal_pils) | |
ret = [] | |
for idx, rgba_normal in enumerate(normal_pils): | |
# rotate normal | |
normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1] | |
alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1] | |
normal_np = normal_np * 2 - 1 | |
normal_np = rotate_normalmap_by_angle(normal_np, rotate_direction * idx * (360 / n_views)) | |
normal_np = (normal_np + 1) / 2 | |
normal_np = normal_np * alpha_np[..., None] # make bg black | |
rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[:, :, None] * 255] , axis=-1) | |
if return_types == 'np': | |
ret.append(rgba_normal_np) | |
elif return_types == 'pil': | |
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8))) | |
else: | |
raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}") | |
return ret | |
def rotate_normalmap_by_angle_torch(normal_map, angle): | |
""" | |
rotate along y-axis | |
normal_map: torch.Tensor, shape=(H, W, 3) in [-1, 1], device='cuda' | |
angle: float, in degree | |
""" | |
angle = torch.tensor(angle / 180 * np.pi).to(normal_map) | |
R = torch.tensor([[torch.cos(angle), 0, torch.sin(angle)], | |
[0, 1, 0], | |
[-torch.sin(angle), 0, torch.cos(angle)]]).to(normal_map) | |
return torch.matmul(normal_map.view(-1, 3), R.T).view(normal_map.shape) | |
def do_rotate(rgba_normal, angle): | |
rgba_normal = torch.from_numpy(rgba_normal).float().cuda() / 255 | |
rotated_normal_tensor = rotate_normalmap_by_angle_torch(rgba_normal[..., :3] * 2 - 1, angle) | |
rotated_normal_tensor = (rotated_normal_tensor + 1) / 2 | |
rotated_normal_tensor = rotated_normal_tensor * rgba_normal[:, :, [3]] # make bg black | |
rgba_normal_np = torch.cat([rotated_normal_tensor * 255, rgba_normal[:, :, [3]] * 255], dim=-1).cpu().numpy() | |
return rgba_normal_np | |
def rotate_normals_torch(normal_pils, return_types='np', rotate_direction=1): | |
n_views = len(normal_pils) | |
ret = [] | |
for idx, rgba_normal in enumerate(normal_pils): | |
# rotate normal | |
angle = rotate_direction * idx * (360 / n_views) | |
rgba_normal_np = do_rotate(np.array(rgba_normal), angle) | |
if return_types == 'np': | |
ret.append(rgba_normal_np) | |
elif return_types == 'pil': | |
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8))) | |
else: | |
raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}") | |
return ret | |
def change_bkgd(img_pils, new_bkgd=(0., 0., 0.)): | |
ret = [] | |
new_bkgd = np.array(new_bkgd).reshape(1, 1, 3) | |
for rgba_img in img_pils: | |
img_np = np.array(rgba_img)[:, :, :3] / 255 | |
alpha_np = np.array(rgba_img)[:, :, 3] / 255 | |
ori_bkgd = img_np[:1, :1] | |
# color = ori_color * alpha + bkgd * (1-alpha) | |
# ori_color = (color - bkgd * (1-alpha)) / alpha | |
alpha_np_clamp = np.clip(alpha_np, 1e-6, 1) # avoid divide by zero | |
ori_img_np = (img_np - ori_bkgd * (1 - alpha_np[..., None])) / alpha_np_clamp[..., None] | |
img_np = np.where(alpha_np[..., None] > 0.05, ori_img_np * alpha_np[..., None] + new_bkgd * (1 - alpha_np[..., None]), new_bkgd) | |
rgba_img_np = np.concatenate([img_np * 255, alpha_np[..., None] * 255], axis=-1) | |
ret.append(Image.fromarray(rgba_img_np.astype(np.uint8))) | |
return ret | |
def change_bkgd_to_normal(normal_pils) -> List[Image.Image]: | |
n_views = len(normal_pils) | |
ret = [] | |
for idx, rgba_normal in enumerate(normal_pils): | |
# calcuate background normal | |
target_bkgd = rotate_normalmap_by_angle(np.array([[[0., 0., 1.]]]), idx * (360 / n_views)) | |
normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1] | |
alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1] | |
normal_np = normal_np * 2 - 1 | |
old_bkgd = normal_np[:1,:1] | |
normal_np[alpha_np > 0.05] = (normal_np[alpha_np > 0.05] - old_bkgd * (1 - alpha_np[alpha_np > 0.05][..., None])) / alpha_np[alpha_np > 0.05][..., None] | |
normal_np = normal_np * alpha_np[..., None] + target_bkgd * (1 - alpha_np[..., None]) | |
normal_np = (normal_np + 1) / 2 | |
rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[..., None] * 255] , axis=-1) | |
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8))) | |
return ret | |
def fix_vert_color_glb(mesh_path): | |
from pygltflib import GLTF2, Material, PbrMetallicRoughness | |
obj1 = GLTF2().load(mesh_path) | |
obj1.meshes[0].primitives[0].material = 0 | |
obj1.materials.append(Material( | |
pbrMetallicRoughness = PbrMetallicRoughness( | |
baseColorFactor = [1.0, 1.0, 1.0, 1.0], | |
metallicFactor = 0., | |
roughnessFactor = 1.0, | |
), | |
emissiveFactor = [0.0, 0.0, 0.0], | |
doubleSided = True, | |
)) | |
obj1.save(mesh_path) | |
def srgb_to_linear(c_srgb): | |
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4) | |
return c_linear.clip(0, 1.) | |
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True): | |
# convert from pytorch3d meshes to trimesh mesh | |
vertices = meshes.verts_packed().cpu().float().numpy() | |
triangles = meshes.faces_packed().cpu().long().numpy() | |
np_color = meshes.textures.verts_features_packed().cpu().float().numpy() | |
if save_glb_path.endswith(".glb"): | |
# rotate 180 along +Y | |
vertices[:, [0, 2]] = -vertices[:, [0, 2]] | |
if apply_sRGB_to_LinearRGB: | |
np_color = srgb_to_linear(np_color) | |
assert vertices.shape[0] == np_color.shape[0] | |
assert np_color.shape[1] == 3 | |
assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}" | |
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color) | |
mesh.remove_unreferenced_vertices() | |
# save mesh | |
mesh.export(save_glb_path) | |
if save_glb_path.endswith(".glb"): | |
fix_vert_color_glb(save_glb_path) | |
print(f"saving to {save_glb_path}") | |
def save_glb_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, dist=3.5, azim_offset=180, resolution=512, fov_in_degrees=1 / 1.15, cam_type="ortho", view_padding=60, export_video=True) -> Tuple[str, str]: | |
import time | |
if '.' in save_mesh_prefix: | |
save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1]) | |
if with_timestamp: | |
save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}" | |
ret_mesh = save_mesh_prefix + ".glb" | |
# optimizied version | |
save_py3dmesh_with_trimesh_fast(meshes, ret_mesh) | |
return ret_mesh, None | |
def simple_clean_mesh(pyml_mesh: ml.Mesh, apply_smooth=True, stepsmoothnum=1, apply_sub_divide=False, sub_divide_threshold=0.25): | |
ms = ml.MeshSet() | |
ms.add_mesh(pyml_mesh, "cube_mesh") | |
if apply_smooth: | |
ms.apply_filter("apply_coord_laplacian_smoothing", stepsmoothnum=stepsmoothnum, cotangentweight=False) | |
if apply_sub_divide: # 5s, slow | |
ms.apply_filter("meshing_repair_non_manifold_vertices") | |
ms.apply_filter("meshing_repair_non_manifold_edges", method='Remove Faces') | |
ms.apply_filter("meshing_surface_subdivision_loop", iterations=2, threshold=PercentageValue(sub_divide_threshold)) | |
return meshlab_mesh_to_py3dmesh(ms.current_mesh()) | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def simple_preprocess(input_image, rembg_session=session, background_color=255): | |
RES = 2048 | |
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS) | |
if input_image.mode != 'RGBA': | |
image_rem = input_image.convert('RGBA') | |
input_image = remove(image_rem, alpha_matting=False, session=rembg_session) | |
arr = np.asarray(input_image) | |
alpha = np.asarray(input_image)[:, :, -1] | |
x_nonzero = np.nonzero((alpha > 60).sum(axis=1)) | |
y_nonzero = np.nonzero((alpha > 60).sum(axis=0)) | |
x_min = int(x_nonzero[0].min()) | |
y_min = int(y_nonzero[0].min()) | |
x_max = int(x_nonzero[0].max()) | |
y_max = int(y_nonzero[0].max()) | |
arr = arr[x_min: x_max, y_min: y_max] | |
input_image = Image.fromarray(arr) | |
input_image = expand2square(input_image, (background_color, background_color, background_color, 0)) | |
return input_image | |
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"): | |
# Convert the background color to a PyTorch tensor | |
new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device) | |
# Convert all images to PyTorch tensors and process them | |
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255 | |
img_nps = imgs[..., :3] | |
alpha_nps = imgs[..., 3] | |
ori_bkgds = img_nps[:, :1, :1] | |
# Avoid divide by zero and calculate the original image | |
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1) | |
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1) | |
ori_img_nps = torch.clamp(ori_img_nps, 0, 1) | |
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd) | |
rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1) | |
return rgba_img_np |