Spaces:
Runtime error
Runtime error
# Copyright 2023 ByteDance and/or its affiliates. | |
# | |
# Copyright (2023) MagicAnimate Authors | |
# | |
# ByteDance, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from ByteDance or | |
# its affiliates is strictly prohibited. | |
import argparse | |
import imageio | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from subprocess import PIPE, run | |
from demo.animate import MagicAnimate | |
for command in [ | |
'mkdir ./pretrained_models && cd pretrained_models', | |
'git lfs clone https://huggingface.co/zcxu-eric/MagicAnimate', | |
'git lfs clone https://huggingface.co/runwayml/stable-diffusion-v1-5', | |
'git lfs clone https://huggingface.co/stabilityai/sd-vae-ft-mse', | |
'cd ..', | |
]: | |
run(command, stdout=PIPE, stderr=PIPE, universal_newlines=True, shell=True) | |
animator = MagicAnimate() | |
def animate(reference_image, motion_sequence_state, seed, steps, guidance_scale): | |
return animator(reference_image, motion_sequence_state, seed, steps, guidance_scale) | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 1200px; margin: 20px auto;"> | |
<h1 style="font-weight: 800; font-size: 2rem; margin: 0rem"> | |
MagicAnimate: Temporally Consistent Human Image Animation | |
</h1> | |
<br> | |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
<a href="https://showlab.github.io/magicanimate">Project page</a> | | |
<a href="https://github.com/magic-research/magic-animate"> GitHub </a> | | |
<a href="https://arxiv.org/abs/2311.16498"> arXiv </a> | |
</h2> | |
</div> | |
""") | |
animation = gr.Video(format="mp4", label="Animation Results", autoplay=True) | |
with gr.Row(): | |
reference_image = gr.Image(label="Reference Image") | |
motion_sequence = gr.Video(format="mp4", label="Motion Sequence") | |
with gr.Column(): | |
random_seed = gr.Textbox(label="Random seed", value=1, info="default: -1") | |
sampling_steps = gr.Textbox(label="Sampling steps", value=25, info="default: 25") | |
guidance_scale = gr.Textbox(label="Guidance scale", value=7.5, info="default: 7.5") | |
submit = gr.Button("Animate") | |
def read_video(video): | |
size = int(size) | |
reader = imageio.get_reader(video) | |
fps = reader.get_meta_data()['fps'] | |
assert fps == 25.0, f'Expected video fps: 25, but {fps} fps found' | |
return video | |
def read_image(image, size=512): | |
return np.array(Image.fromarray(image).resize((size, size))) | |
# when user uploads a new video | |
motion_sequence.upload( | |
read_video, | |
motion_sequence, | |
motion_sequence | |
) | |
# when `first_frame` is updated | |
reference_image.upload( | |
read_image, | |
reference_image, | |
reference_image | |
) | |
# when the `submit` button is clicked | |
submit.click( | |
animate, | |
[reference_image, motion_sequence, random_seed, sampling_steps, guidance_scale], | |
animation | |
) | |
# Examples | |
gr.Markdown("## Examples") | |
gr.Examples( | |
examples=[ | |
["inputs/applications/source_image/monalisa.png", "inputs/applications/driving/densepose/running.mp4"], | |
["inputs/applications/source_image/demo4.png", "inputs/applications/driving/densepose/demo4.mp4"], | |
["inputs/applications/source_image/0002.png", "inputs/applications/driving/densepose/demo4.mp4"], | |
["inputs/applications/source_image/dalle2.jpeg", "inputs/applications/driving/densepose/running2.mp4"], | |
["inputs/applications/source_image/dalle8.jpeg", "inputs/applications/driving/densepose/dancing2.mp4"], | |
["inputs/applications/source_image/multi1_source.png", "inputs/applications/driving/densepose/multi_dancing.mp4"], | |
], | |
inputs=[reference_image, motion_sequence], | |
outputs=animation, | |
) | |
demo.launch(share=True) |