Spaces:
Running
Running
import streamlit as st | |
from langchain_community.document_loaders import PyPDFLoader | |
st.title("RAG Demo") | |
''' | |
Provide a URL to a PDF document you want to ask questions about. | |
Once the document has been uploaded and parsed, ask your questions in the chat dialog that will appear below. | |
''' | |
# Create a file uploader? | |
# st.sidebar.file_uploader("Choose a PDF file", type=["pdf"]) | |
url = st.text_input("PDF URL", "https://www.resources.ca.gov/-/media/CNRA-Website/Files/2024_30x30_Pathways_Progress_Report.pdf") | |
def doc_loader(url): | |
loader = PyPDFLoader(url) | |
return loader.load() | |
docs = doc_loader(url) | |
# Set up the language model | |
from langchain_openai import ChatOpenAI | |
llm = ChatOpenAI(model = "llama3", api_key=st.secrets["LITELLM_KEY"], base_url = "https://llm.nrp-nautilus.io", temperature=0) | |
# Set up the embedding model | |
from langchain_openai import OpenAIEmbeddings | |
embedding = OpenAIEmbeddings( | |
model = "embed-mistral", | |
api_key=st.secrets["LITELLM_KEY"], | |
base_url = "https://llm.nrp-nautilus.io" | |
) | |
# Build a retrival agent | |
from langchain_core.vectorstores import InMemoryVectorStore | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
splits = text_splitter.split_documents(docs) | |
vectorstore = InMemoryVectorStore.from_documents(documents=splits, embedding=embedding) | |
retriever = vectorstore.as_retriever() | |
from langchain.chains import create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
system_prompt = ( | |
"You are an assistant for question-answering tasks. " | |
"Use the following pieces of retrieved context to answer " | |
"the question. If you don't know the answer, say that you " | |
"don't know. Use three sentences maximum and keep the " | |
"answer concise." | |
"\n\n" | |
"{context}" | |
) | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", system_prompt), | |
("human", "{input}"), | |
] | |
) | |
question_answer_chain = create_stuff_documents_chain(llm, prompt) | |
rag_chain = create_retrieval_chain(retriever, question_answer_chain) | |
# + | |
# agent is ready to test: | |
#results = rag_chain.invoke({"input": "What is the goal of CA 30x30?"}) | |
#results['answer'] | |
#results['context'][0].page_content | |
#results['context'][0].metadata | |
# - | |
#results['context'][0].page_content | |
#results['context'][0].metadata | |
# Place agent inside a streamlit application: | |
if prompt := st.chat_input("What is the goal of CA 30x30?"): | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant"): | |
results = rag_chain.invoke({"input": prompt}) | |
st.write(results['answer']) | |
with st.expander("See context matched"): | |
st.write(results['context'][0].page_content) | |
st.write(results['context'][0].metadata) | |
# adapt for memory / multi-question interaction with: | |
# https://python.langchain.com/docs/tutorials/qa_chat_history/ | |
# Also see structured outputs. | |