streamlit-demo / rag.py
cboettig's picture
demos
73afc0c
raw
history blame
3.09 kB
import streamlit as st
from langchain_community.document_loaders import PyPDFLoader
st.title("RAG Demo")
'''
Provide a URL to a PDF document you want to ask questions about.
Once the document has been uploaded and parsed, ask your questions in the chat dialog that will appear below.
'''
# Create a file uploader?
# st.sidebar.file_uploader("Choose a PDF file", type=["pdf"])
url = st.text_input("PDF URL", "https://www.resources.ca.gov/-/media/CNRA-Website/Files/2024_30x30_Pathways_Progress_Report.pdf")
@st.cache_data
def doc_loader(url):
loader = PyPDFLoader(url)
return loader.load()
docs = doc_loader(url)
# Set up the language model
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model = "llama3", api_key=st.secrets["LITELLM_KEY"], base_url = "https://llm.nrp-nautilus.io", temperature=0)
# Set up the embedding model
from langchain_openai import OpenAIEmbeddings
embedding = OpenAIEmbeddings(
model = "embed-mistral",
api_key=st.secrets["LITELLM_KEY"],
base_url = "https://llm.nrp-nautilus.io"
)
# Build a retrival agent
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = InMemoryVectorStore.from_documents(documents=splits, embedding=embedding)
retriever = vectorstore.as_retriever()
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
system_prompt = (
"You are an assistant for question-answering tasks. "
"Use the following pieces of retrieved context to answer "
"the question. If you don't know the answer, say that you "
"don't know. Use three sentences maximum and keep the "
"answer concise."
"\n\n"
"{context}"
)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
# +
# agent is ready to test:
#results = rag_chain.invoke({"input": "What is the goal of CA 30x30?"})
#results['answer']
#results['context'][0].page_content
#results['context'][0].metadata
# -
#results['context'][0].page_content
#results['context'][0].metadata
# Place agent inside a streamlit application:
if prompt := st.chat_input("What is the goal of CA 30x30?"):
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
results = rag_chain.invoke({"input": prompt})
st.write(results['answer'])
with st.expander("See context matched"):
st.write(results['context'][0].page_content)
st.write(results['context'][0].metadata)
# adapt for memory / multi-question interaction with:
# https://python.langchain.com/docs/tutorials/qa_chat_history/
# Also see structured outputs.