File size: 22,455 Bytes
9a29707
5baf1ba
 
b2cbd31
 
 
edf087c
4da13bc
a13d2fb
451f968
9a29707
 
553945f
 
1035756
 
553945f
 
5f44255
 
 
b2cbd31
d4af6bb
fed65cb
b2cbd31
 
 
 
 
 
 
 
 
 
 
 
a8243f0
b2cbd31
 
edf087c
 
6dd1216
7aaf14b
 
3325cab
edf087c
ee6e935
dda73f0
a875242
9a29707
cb9e139
 
b61011d
fd117d1
 
 
b61011d
fd117d1
6810c9e
fd117d1
 
 
 
b61011d
cb9e139
 
 
 
 
 
9a29707
cb9e139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a29707
9fc1cf9
 
 
 
 
 
cb9e139
 
 
 
9fc1cf9
 
 
 
 
 
 
 
9a29707
71ca02a
 
 
 
 
 
 
 
 
cb9e139
9a29707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd4a78c
9a29707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc1cf9
4c902e5
 
 
 
 
 
 
 
 
 
 
 
9a29707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd4a78c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda73f0
 
80f0aec
ad35cd7
50a7cb9
80f0aec
 
 
 
 
3ff67ad
ad35cd7
ad0cb10
80f0aec
 
 
 
 
ad0cb10
 
 
293ee1f
80f0aec
1035756
 
593049e
c577130
 
 
 
1035756
c577130
1035756
593049e
c577130
 
 
 
 
 
 
 
 
 
ad35cd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f0aec
553945f
 
dda73f0
 
 
 
 
 
 
 
 
 
553945f
 
 
 
 
 
 
 
 
 
 
 
dda73f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403c23
 
 
 
 
 
 
dda73f0
 
 
 
 
9b0efd2
f91ca32
 
9b0efd2
0c21381
 
 
bf33340
0c21381
 
 
 
 
 
 
9b0efd2
 
 
 
f91ca32
9b0efd2
f91ca32
9b0efd2
 
 
 
 
 
 
2403c23
 
42f36ff
e9e55e2
42f36ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda73f0
2403c23
 
dda73f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
553945f
 
44aeb35
553945f
dda73f0
 
 
 
d725303
80f0aec
d725303
80f0aec
1035756
 
 
 
d725303
ad35cd7
d725303
ad35cd7
dda73f0
 
 
 
9a29707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
759cb88
5baf1ba
 
6dd1216
5baf1ba
6dd1216
5f44255
c577130
 
fa55e95
c577130
5816802
b4d2c26
 
6dd1216
5baf1ba
 
 
ea5222d
5baf1ba
d4e2ce0
 
7aaf14b
5baf1ba
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import warnings
import gradio as gr
from transformers import pipeline
from transformers import AutoProcessor
from pyctcdecode import build_ctcdecoder
from transformers import Wav2Vec2ProcessorWithLM

import os
import re
#import torchaudio

# Initialize the speech recognition pipeline and transliterator
odia_model1 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-odia_v1")
odia_model2 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-odia_v2")
# p2 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_v1")
# punjaib_modle_30000=pipeline(task="automatic-speech-recognition", model="cdactvm/wav2vec-bert-punjabi-30000-model")
# punjaib_modle_155750=pipeline(task="automatic-speech-recognition", model="cdactvm/wav2vec-bert-punjabi-155750-model")
# punjaib_modle_70000_aug=pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-model-30000-augmented")
#p3 = pipeline(task="automatic-speech-recognition", model="cdactvm/kannada_w2v-bert_model")
#p4 = pipeline(task="automatic-speech-recognition", model="cdactvm/telugu_w2v-bert_model")
#p5 = pipeline(task="automatic-speech-recognition", model="Sajjo/w2v-bert-2.0-bangala-gpu-CV16.0_v2")
#p6 = pipeline(task="automatic-speech-recognition", model="cdactvm/hf-open-assames")
# p7 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-assames")
processor = AutoProcessor.from_pretrained("cdactvm/w2v-bert-odia_v2")
vocab_dict = processor.tokenizer.get_vocab()
sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}
decoder = build_ctcdecoder(
    labels=list(sorted_vocab_dict.keys()),
    kenlm_model_path="lm.binary",
    )
processor_with_lm = Wav2Vec2ProcessorWithLM(
    feature_extractor=processor.feature_extractor,
    tokenizer=processor.tokenizer,
    decoder=decoder
    )
processor.feature_extractor._processor_class = "Wav2Vec2ProcessorWithLM"
#p8 = pipeline("automatic-speech-recognition", model="cdactvm/w2v-assames", tokenizer=processor_with_lm, feature_extractor=processor_with_lm.feature_extractor, decoder=processor_with_lm.decoder)
    

os.system('git clone https://github.com/irshadbhat/indic-trans.git')
os.system('pip install ./indic-trans/.')

#HF_TOKEN = os.getenv('HF_TOKEN')
#hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "asr_demo")

from indictrans import Transliterator

###########################################

# Function to replace incorrectly spelled words
def replace_words(sentence):
    replacements = [
        (r'\bjiro\b', 'zero'), (r'\bjero\b', 'zero'), 
        (r'\bnn\b', 'one'),(r'\bn\b', 'one'), (r'\bvan\b', 'one'),(r'\bna\b', 'one'), (r'\bnn\b', 'one'),(r'\bek\b', 'one'),
        (r'\btu\b', 'two'),(r'\btoo\b', 'two'),(r'\bdo\b', 'two'),
        (r'\bthiri\b', 'three'), (r'\btiri\b', 'three'), (r'\bdubalathri\b', 'double three'),(r'\btin\b', 'three'), 
        (r'\bfor\b', 'four'),(r'\bfore\b', 'four'), 
        (r'\bfib\b', 'five'),(r'\bpaanch\b', 'five'), 
        (r'\bchha\b', 'six'),(r'\bchhah\b', 'six'),(r'\bchau\b', 'six'),
        (r'\bdublseven\b', 'double seven'),(r'\bsath\b', 'seven'),
        (r'\baath\b', 'eight'),
        (r'\bnau\b', 'nine'),
        (r'\bdas\b', 'ten'),
        (r'\bnineeit\b', 'nine eight'),
        (r'\bfipeit\b', 'five eight'), (r'\bdubal\b', 'double'), (r'\bsevenatu\b', 'seven two'),
    ]
    for pattern, replacement in replacements:
        sentence = re.sub(pattern, replacement, sentence)
    return sentence

# Function to process "double" followed by a number
def process_doubles(sentence):
    tokens = sentence.split()
    result = []
    i = 0
    while i < len(tokens):
        if tokens[i] in ("double", "dubal"):
            if i + 1 < len(tokens):
                result.append(tokens[i + 1])
                result.append(tokens[i + 1])
                i += 2
            else:
                result.append(tokens[i])
                i += 1
        else:
            result.append(tokens[i])
            i += 1
    return ' '.join(result)

# Function to generate Soundex code for a word
def soundex(word):
    word = word.upper()
    word = ''.join(filter(str.isalpha, word))
    if not word:
        return None
    soundex_mapping = {
        'B': '1', 'F': '1', 'P': '1', 'V': '1',
        'C': '2', 'G': '2', 'J': '2', 'K': '2', 'Q': '2', 'S': '2', 'X': '2', 'Z': '2',
        'D': '3', 'T': '3', 'L': '4', 'M': '5', 'N': '5', 'R': '6'
    }
    soundex_code = word[0]
    for char in word[1:]:
        if char not in ('H', 'W'):
            soundex_code += soundex_mapping.get(char, '0')
            soundex_code = soundex_code[0] + ''.join(c for i, c in enumerate(soundex_code[1:]) if c != soundex_code[i])
            soundex_code = soundex_code.replace('0', '') + '000'
    return soundex_code[:4]

# Function to convert text to numerical representation
def is_number(x):
    if type(x) == str:
        x = x.replace(',', '')
    try:
        float(x)
    except:
        return False
    return True

def text2int(textnum, numwords={}):
    units = ['Z600', 'O500','T000','T600','F600','F100','S220','S150','E300','N500',
             'T500', 'E415', 'T410', 'T635', 'F635', 'F135', 'S235', 'S153', 'E235','N535']
    tens = ['', '', 'T537', 'T637', 'F637', 'F137', 'S230', 'S153', 'E230', 'N530']
    scales = ['H536', 'T253', 'M450', 'C600']
    ordinal_words = {'oh': 'Z600', 'first': 'O500', 'second': 'T000', 'third': 'T600', 'fourth': 'F600', 'fifth': 'F100',
                     'sixth': 'S200','seventh': 'S150','eighth': 'E230', 'ninth': 'N500', 'twelfth': 'T410'}
    ordinal_endings = [('ieth', 'y'), ('th', '')]
    if not numwords:
        numwords['and'] = (1, 0)
        for idx, word in enumerate(units): numwords[word] = (1, idx)
        for idx, word in enumerate(tens): numwords[word] = (1, idx * 10)
        for idx, word in enumerate(scales): numwords[word] = (10 ** (idx * 3 or 2), 0)

    textnum = textnum.replace('-', ' ')

    current = result = 0
    curstring = ''
    onnumber = False
    lastunit = False
    lastscale = False

    def is_numword(x):
        if is_number(x):
            return True
        if x in numwords:
            return True
        return False

    def from_numword(x):
        if is_number(x):
            scale = 0
            increment = int(x.replace(',', ''))
            return scale, increment
        return numwords[x]

    for word in textnum.split():
        if word in ordinal_words:
            scale, increment = (1, ordinal_words[word])
            current = current * scale + increment
            if scale > 100:
                result += current
                current = 0
            onnumber = True
            lastunit = False
            lastscale = False
        else:
            for ending, replacement in ordinal_endings:
                if word.endswith(ending):
                    word = "%s%s" % (word[:-len(ending)], replacement)

            if (not is_numword(word)) or (word == 'and' and not lastscale):
                if onnumber:
                    curstring += repr(result + current) + " "
                curstring += word + " "
                result = current = 0
                onnumber = False
                lastunit = False
                lastscale = False
            else:
                scale, increment = from_numword(word)
                onnumber = True

                if lastunit and (word not in scales):
                    curstring += repr(result + current)
                    result = current = 0

                if scale > 1:
                    current = max(1, current)

                current = current * scale + increment
                if scale > 100:
                    result += current
                    current = 0

                lastscale = False
                lastunit = False
                if word in scales:
                    lastscale = True
                elif word in units:
                    lastunit = True

    if onnumber:
        curstring += repr(result + current)

    return curstring

# Convert sentence to transcript using Soundex
def sentence_to_transcript(sentence, word_to_code_map):
    words = sentence.split()
    transcript_codes = []

    for word in words:
        if word not in word_to_code_map:
            word_to_code_map[word] = soundex(word)
        transcript_codes.append(word_to_code_map[word])
    
    transcript = ' '.join(transcript_codes)
    return transcript

# Convert transcript back to sentence using mapping
def transcript_to_sentence(transcript, code_to_word_map):
    codes = transcript.split()
    sentence_words = []

    for code in codes:
        sentence_words.append(code_to_word_map.get(code, code))
    
    sentence = ' '.join(sentence_words)
    return sentence

# # Process the audio file
# transcript = pipe("./odia_recorded/AUD-20240614-WA0004.wav")
# text_value = transcript['text']
# sentence = trn.transform(text_value)
# replaced_words = replace_words(sentence)
# processed_sentence = process_doubles(replaced_words)

# input_sentence_1 = processed_sentence

# Create empty mappings
word_to_code_map = {}
code_to_word_map = {}

# Convert sentence to transcript
# transcript_1 = sentence_to_transcript(input_sentence_1, word_to_code_map)

# Convert transcript to numerical representation
# numbers = text2int(transcript_1)

# Create reverse mapping
code_to_word_map = {v: k for k, v in word_to_code_map.items()}

def process_transcription(input_sentence):
    word_to_code_map = {}
    code_to_word_map = {}

    transcript_1 = sentence_to_transcript(input_sentence, word_to_code_map)
    if transcript_1 is None:
        return "Error: Transcript conversion returned None"

    numbers = text2int(transcript_1)
    if numbers is None:
        return "Error: Text to number conversion returned None"

    code_to_word_map = {v: k for k, v in word_to_code_map.items()}
    text = transcript_to_sentence(numbers, code_to_word_map)
    return text

###########################################

def transcribe_punjabi_30000(speech):
    text = punjaib_modle_30000(speech)["text"]
    text = text.replace("[PAD]","")
    if text is None:
        return "Error: ASR returned None"
    return text

def transcribe_punjabi_eng_model_30000(speech):
    trn = Transliterator(source='pan', target='eng', build_lookup=True)
    text = punjaib_modle_30000(speech)["text"]
    text = text.replace("[PAD]","")
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)
    return sentence

def transcribe_punjabi_70000_aug(speech):
    text = punjaib_modle_70000_aug(speech)["text"]
    text = text.replace("<s>","")
    if text is None:
        return "Error: ASR returned None"
    return text

def transcribe_punjabi_eng_model_70000_aug(speech):
    trn = Transliterator(source='pan', target='eng', build_lookup=True)
    text = punjaib_modle_70000_aug(speech)["text"]
    text = text.replace("<s>","")
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)
    return sentence

def transcribe_punjabi_155750(speech):
    text = punjaib_modle_155750(speech)["text"]
    text = text.replace("[PAD]","")
    if text is None:
        return "Error: ASR returned None"
    return text

def transcribe_punjabi_eng_model_155750(speech):
    trn = Transliterator(source='pan', target='eng', build_lookup=True)
    text = punjaib_modle_155750(speech)["text"]
    text = text.replace("[PAD]","")
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)
    return sentence
    
###########################################
def transcribe_odiya_model1(speech):
    text = odia_model1(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    return text

def transcribe_odiya_model2(speech):
    text = odia_model2(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    return text

def transcribe_odiya_eng_model1(speech):
    trn = Transliterator(source='ori', target='eng', build_lookup=True)
    text = odia_model1(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)
    
def transcribe_odiya_eng_model2(speech):
    trn = Transliterator(source='ori', target='eng', build_lookup=True)
    text = odia_model2(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)

########################################
def cleanhtml(raw_html):
    cleantext = re.sub(r'<.*?>', '', raw_html)
    return cleantext
#######################################

# def transcribe_hindi(speech):
#     text = p2(speech)["text"]
#     if text is None:
#         return "Error: ASR returned None"
#     return text

def transcribe_hindi(speech):
    text = p2(speech)["text"]
    if text is None:
        return "Error: ASR returned None"

    hindi_map = {   
        "सेवन": "7",
        "जीरो": "0",
        "वन" : "1",
        "टू"  : "2",
        "थ्री"  : "3",
        "त्री"  : "3",
        "फोर" : "4",
        "फाइव": "5",
        "सिक्स": "6",
        "एट": "8",
        "नाइन": "9",
        "टेन": "10",
        "एक": "1",
        "दो": "2",
        "तीन": "3",
        "चार": "4",
        "पांच": "5",
        "पाँच": "5",
        "छह": "6",
        "छः": "6", 
        "सात": "7",
        "आठ": "8",
        "नौ": "9",
        "दस": "10"
    }
    
    for hindi, num in hindi_map.items():
        text = text.replace(hindi, num)

    # Split the string into parts separated by spaces
    parts = text.split(' ')

    # Initialize an empty list to store the processed parts
    processed_parts = []

    # Iterate over each part
    for part in parts:
        # Check if the part is a number (contains only digits)
        if part.isdigit():
            # If the previous part was also a number, concatenate them
            if processed_parts and processed_parts[-1].isdigit():
                processed_parts[-1] += part
            else:
                processed_parts.append(part)
        else:
            # If the part is not a number, add it to the list as is
            processed_parts.append(part)

    # Join the processed parts back into a string with spaces
    text = ' '.join(processed_parts)

    return text

###########################################################
def transcribe_kannada(speech):
    text = p3(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    return text
def transcribe_telugu(speech):
    text = p4(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    return text
    
def transcribe_bangala(speech):
    text = p5(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    return text

def transcribe_assamese_LM(speech):
    text = p8(speech)["text"]
    text = cleanhtml(text)
    if text is None:
        return "Error: ASR returned None"
    return text
    
def transcribe_assamese_model2(speech):
    text = p7(speech)["text"]
    text = cleanhtml(text)
    if text is None:
        return "Error: ASR returned None"
    return text
    
def transcribe_ban_eng(speech):
    trn = Transliterator(source='ben', target='eng', build_lookup=True)
    text = p5(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)

def transcribe_hin_eng(speech):
    trn = Transliterator(source='hin', target='eng', build_lookup=True)
    text = p2(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)

def transcribe_kan_eng(speech):
    trn = Transliterator(source='kan', target='eng', build_lookup=True)
    text = p3(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)
    
def transcribe_tel_eng(speech):
    trn = Transliterator(source='tel', target='eng', build_lookup=True)
    text = p4(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)


def sel_lng(lng, mic=None, file=None):
    if mic is not None:
        audio = mic
    elif file is not None:
        audio = file
    else:
        return "You must either provide a mic recording or a file"
    
    if lng == "Odiya":
        return transcribe_odiya(audio)
    elif lng == "Odiya-trans":
        return transcribe_odiya_eng(audio)
    elif lng == "Hindi-trans":
        return transcribe_hin_eng(audio)
    elif lng == "Hindi":
        return transcribe_hindi(audio)
    elif lng == "Kannada-trans":
       return transcribe_kan_eng(audio)
    elif lng == "Kannada":
       return transcribe_kannada(audio)
    elif lng == "Telugu-trans":
       return transcribe_tel_eng(audio)
    elif lng == "Telugu":
       return transcribe_telugu(audio)
    elif lng == "Bangala-trans":
       return transcribe_ban_eng(audio)
    elif lng == "Bangala":
       return transcribe_bangala(audio)
    elif lng == "Assamese-LM":
       return transcribe_assamese_LM(audio)
    elif lng == "Assamese-Model2":
       return transcribe_assamese_model2(audio)
    elif lng == "Odia_model1":
       return transcribe_odiya_model1(audio)
    elif lng == "Odiya_trans_model1":
       return transcribe_odiya_eng_model1(audio)
    elif lng == "Odia_model2":
       return transcribe_odiya_model2(audio)
    elif lng == "Odia_trans_model2":
       return transcribe_odiya_eng_model2(audio)
    elif lng == "Punjabi_Model0":
       return transcribe_punjabi_30000(audio)
    elif lng == "Punjabi_Model0_Trans":
       return transcribe_punjabi_eng_model_30000(audio)
    elif lng == "Punjabi_Model_aug":
       return transcribe_punjabi_70000_aug(audio)
    elif lng == "Punjabi_Model_aug_Trans":
       return transcribe_punjabi_eng_model_70000_aug(audio)
    elif lng == "Punjabi_Model1":
       return transcribe_punjabi_155750(audio)
    elif lng == "Punjabi_Model1_Trans":
       return transcribe_punjabi_eng_model_155750(audio)
        
    


# Convert transcript back to sentence
# reconstructed_sentence_1 = transcript_to_sentence(numbers, code_to_word_map)

# demo=gr.Interface(
#     fn=sel_lng, 
      
#     inputs=[
        
#         gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans"],value="Hindi",label="Select Language"),
#         gr.Audio(source="microphone", type="filepath"),
#         gr.Audio(source= "upload", type="filepath"),
#         #gr.Audio(sources="upload", type="filepath"),
#         #"state"
#     ],
#     outputs=[
#         "textbox"
# #        #"state"
#     ],
#     title="Automatic Speech Recognition",
#     description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
#       ).launch()

######################################################    
demo=gr.Interface(
    fn=sel_lng, 
      
    inputs=[
        
        #gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans","Kannada","Kannada-trans","Telugu","Telugu-trans","Bangala","Bangala-trans"],value="Hindi",label="Select Language"),
        gr.Dropdown([
            # "Hindi","Hindi-trans",
            "Odia_model1","Odiya_trans_model1","Odia_model2","Odia_trans_model2"],label="Select Language"),
            # "Assamese-LM","Assamese-Model2",
            # "Punjabi_Model1","Punjabi_Model1_Trans","Punjabi_Model_aug","Punjabi_Model_aug_Trans"],value="Hindi",label="Select Language"),
        gr.Audio(sources=["microphone","upload"], type="filepath"),
        #gr.Audio(sources="upload", type="filepath"),
        #"state"
    ],
    outputs=[
        "textbox"
#        #"state"
    ],
    allow_flagging="auto",
    #flagging_options=["Language error", "English transliteration error", "Other"],
    #flagging_callback=hf_writer,
    title="Automatic Speech Recognition",
    description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
      ).launch()