Spaces:
Sleeping
Sleeping
File size: 22,455 Bytes
9a29707 5baf1ba b2cbd31 edf087c 4da13bc a13d2fb 451f968 9a29707 553945f 1035756 553945f 5f44255 b2cbd31 d4af6bb fed65cb b2cbd31 a8243f0 b2cbd31 edf087c 6dd1216 7aaf14b 3325cab edf087c ee6e935 dda73f0 a875242 9a29707 cb9e139 b61011d fd117d1 b61011d fd117d1 6810c9e fd117d1 b61011d cb9e139 9a29707 cb9e139 9a29707 9fc1cf9 cb9e139 9fc1cf9 9a29707 71ca02a cb9e139 9a29707 bd4a78c 9a29707 9fc1cf9 4c902e5 9a29707 bd4a78c dda73f0 80f0aec ad35cd7 50a7cb9 80f0aec 3ff67ad ad35cd7 ad0cb10 80f0aec ad0cb10 293ee1f 80f0aec 1035756 593049e c577130 1035756 c577130 1035756 593049e c577130 ad35cd7 80f0aec 553945f dda73f0 553945f dda73f0 2403c23 dda73f0 9b0efd2 f91ca32 9b0efd2 0c21381 bf33340 0c21381 9b0efd2 f91ca32 9b0efd2 f91ca32 9b0efd2 2403c23 42f36ff e9e55e2 42f36ff dda73f0 2403c23 dda73f0 553945f 44aeb35 553945f dda73f0 d725303 80f0aec d725303 80f0aec 1035756 d725303 ad35cd7 d725303 ad35cd7 dda73f0 9a29707 759cb88 5baf1ba 6dd1216 5baf1ba 6dd1216 5f44255 c577130 fa55e95 c577130 5816802 b4d2c26 6dd1216 5baf1ba ea5222d 5baf1ba d4e2ce0 7aaf14b 5baf1ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
import warnings
import gradio as gr
from transformers import pipeline
from transformers import AutoProcessor
from pyctcdecode import build_ctcdecoder
from transformers import Wav2Vec2ProcessorWithLM
import os
import re
#import torchaudio
# Initialize the speech recognition pipeline and transliterator
odia_model1 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-odia_v1")
odia_model2 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-odia_v2")
# p2 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_v1")
# punjaib_modle_30000=pipeline(task="automatic-speech-recognition", model="cdactvm/wav2vec-bert-punjabi-30000-model")
# punjaib_modle_155750=pipeline(task="automatic-speech-recognition", model="cdactvm/wav2vec-bert-punjabi-155750-model")
# punjaib_modle_70000_aug=pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-model-30000-augmented")
#p3 = pipeline(task="automatic-speech-recognition", model="cdactvm/kannada_w2v-bert_model")
#p4 = pipeline(task="automatic-speech-recognition", model="cdactvm/telugu_w2v-bert_model")
#p5 = pipeline(task="automatic-speech-recognition", model="Sajjo/w2v-bert-2.0-bangala-gpu-CV16.0_v2")
#p6 = pipeline(task="automatic-speech-recognition", model="cdactvm/hf-open-assames")
# p7 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-assames")
processor = AutoProcessor.from_pretrained("cdactvm/w2v-bert-odia_v2")
vocab_dict = processor.tokenizer.get_vocab()
sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}
decoder = build_ctcdecoder(
labels=list(sorted_vocab_dict.keys()),
kenlm_model_path="lm.binary",
)
processor_with_lm = Wav2Vec2ProcessorWithLM(
feature_extractor=processor.feature_extractor,
tokenizer=processor.tokenizer,
decoder=decoder
)
processor.feature_extractor._processor_class = "Wav2Vec2ProcessorWithLM"
#p8 = pipeline("automatic-speech-recognition", model="cdactvm/w2v-assames", tokenizer=processor_with_lm, feature_extractor=processor_with_lm.feature_extractor, decoder=processor_with_lm.decoder)
os.system('git clone https://github.com/irshadbhat/indic-trans.git')
os.system('pip install ./indic-trans/.')
#HF_TOKEN = os.getenv('HF_TOKEN')
#hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "asr_demo")
from indictrans import Transliterator
###########################################
# Function to replace incorrectly spelled words
def replace_words(sentence):
replacements = [
(r'\bjiro\b', 'zero'), (r'\bjero\b', 'zero'),
(r'\bnn\b', 'one'),(r'\bn\b', 'one'), (r'\bvan\b', 'one'),(r'\bna\b', 'one'), (r'\bnn\b', 'one'),(r'\bek\b', 'one'),
(r'\btu\b', 'two'),(r'\btoo\b', 'two'),(r'\bdo\b', 'two'),
(r'\bthiri\b', 'three'), (r'\btiri\b', 'three'), (r'\bdubalathri\b', 'double three'),(r'\btin\b', 'three'),
(r'\bfor\b', 'four'),(r'\bfore\b', 'four'),
(r'\bfib\b', 'five'),(r'\bpaanch\b', 'five'),
(r'\bchha\b', 'six'),(r'\bchhah\b', 'six'),(r'\bchau\b', 'six'),
(r'\bdublseven\b', 'double seven'),(r'\bsath\b', 'seven'),
(r'\baath\b', 'eight'),
(r'\bnau\b', 'nine'),
(r'\bdas\b', 'ten'),
(r'\bnineeit\b', 'nine eight'),
(r'\bfipeit\b', 'five eight'), (r'\bdubal\b', 'double'), (r'\bsevenatu\b', 'seven two'),
]
for pattern, replacement in replacements:
sentence = re.sub(pattern, replacement, sentence)
return sentence
# Function to process "double" followed by a number
def process_doubles(sentence):
tokens = sentence.split()
result = []
i = 0
while i < len(tokens):
if tokens[i] in ("double", "dubal"):
if i + 1 < len(tokens):
result.append(tokens[i + 1])
result.append(tokens[i + 1])
i += 2
else:
result.append(tokens[i])
i += 1
else:
result.append(tokens[i])
i += 1
return ' '.join(result)
# Function to generate Soundex code for a word
def soundex(word):
word = word.upper()
word = ''.join(filter(str.isalpha, word))
if not word:
return None
soundex_mapping = {
'B': '1', 'F': '1', 'P': '1', 'V': '1',
'C': '2', 'G': '2', 'J': '2', 'K': '2', 'Q': '2', 'S': '2', 'X': '2', 'Z': '2',
'D': '3', 'T': '3', 'L': '4', 'M': '5', 'N': '5', 'R': '6'
}
soundex_code = word[0]
for char in word[1:]:
if char not in ('H', 'W'):
soundex_code += soundex_mapping.get(char, '0')
soundex_code = soundex_code[0] + ''.join(c for i, c in enumerate(soundex_code[1:]) if c != soundex_code[i])
soundex_code = soundex_code.replace('0', '') + '000'
return soundex_code[:4]
# Function to convert text to numerical representation
def is_number(x):
if type(x) == str:
x = x.replace(',', '')
try:
float(x)
except:
return False
return True
def text2int(textnum, numwords={}):
units = ['Z600', 'O500','T000','T600','F600','F100','S220','S150','E300','N500',
'T500', 'E415', 'T410', 'T635', 'F635', 'F135', 'S235', 'S153', 'E235','N535']
tens = ['', '', 'T537', 'T637', 'F637', 'F137', 'S230', 'S153', 'E230', 'N530']
scales = ['H536', 'T253', 'M450', 'C600']
ordinal_words = {'oh': 'Z600', 'first': 'O500', 'second': 'T000', 'third': 'T600', 'fourth': 'F600', 'fifth': 'F100',
'sixth': 'S200','seventh': 'S150','eighth': 'E230', 'ninth': 'N500', 'twelfth': 'T410'}
ordinal_endings = [('ieth', 'y'), ('th', '')]
if not numwords:
numwords['and'] = (1, 0)
for idx, word in enumerate(units): numwords[word] = (1, idx)
for idx, word in enumerate(tens): numwords[word] = (1, idx * 10)
for idx, word in enumerate(scales): numwords[word] = (10 ** (idx * 3 or 2), 0)
textnum = textnum.replace('-', ' ')
current = result = 0
curstring = ''
onnumber = False
lastunit = False
lastscale = False
def is_numword(x):
if is_number(x):
return True
if x in numwords:
return True
return False
def from_numword(x):
if is_number(x):
scale = 0
increment = int(x.replace(',', ''))
return scale, increment
return numwords[x]
for word in textnum.split():
if word in ordinal_words:
scale, increment = (1, ordinal_words[word])
current = current * scale + increment
if scale > 100:
result += current
current = 0
onnumber = True
lastunit = False
lastscale = False
else:
for ending, replacement in ordinal_endings:
if word.endswith(ending):
word = "%s%s" % (word[:-len(ending)], replacement)
if (not is_numword(word)) or (word == 'and' and not lastscale):
if onnumber:
curstring += repr(result + current) + " "
curstring += word + " "
result = current = 0
onnumber = False
lastunit = False
lastscale = False
else:
scale, increment = from_numword(word)
onnumber = True
if lastunit and (word not in scales):
curstring += repr(result + current)
result = current = 0
if scale > 1:
current = max(1, current)
current = current * scale + increment
if scale > 100:
result += current
current = 0
lastscale = False
lastunit = False
if word in scales:
lastscale = True
elif word in units:
lastunit = True
if onnumber:
curstring += repr(result + current)
return curstring
# Convert sentence to transcript using Soundex
def sentence_to_transcript(sentence, word_to_code_map):
words = sentence.split()
transcript_codes = []
for word in words:
if word not in word_to_code_map:
word_to_code_map[word] = soundex(word)
transcript_codes.append(word_to_code_map[word])
transcript = ' '.join(transcript_codes)
return transcript
# Convert transcript back to sentence using mapping
def transcript_to_sentence(transcript, code_to_word_map):
codes = transcript.split()
sentence_words = []
for code in codes:
sentence_words.append(code_to_word_map.get(code, code))
sentence = ' '.join(sentence_words)
return sentence
# # Process the audio file
# transcript = pipe("./odia_recorded/AUD-20240614-WA0004.wav")
# text_value = transcript['text']
# sentence = trn.transform(text_value)
# replaced_words = replace_words(sentence)
# processed_sentence = process_doubles(replaced_words)
# input_sentence_1 = processed_sentence
# Create empty mappings
word_to_code_map = {}
code_to_word_map = {}
# Convert sentence to transcript
# transcript_1 = sentence_to_transcript(input_sentence_1, word_to_code_map)
# Convert transcript to numerical representation
# numbers = text2int(transcript_1)
# Create reverse mapping
code_to_word_map = {v: k for k, v in word_to_code_map.items()}
def process_transcription(input_sentence):
word_to_code_map = {}
code_to_word_map = {}
transcript_1 = sentence_to_transcript(input_sentence, word_to_code_map)
if transcript_1 is None:
return "Error: Transcript conversion returned None"
numbers = text2int(transcript_1)
if numbers is None:
return "Error: Text to number conversion returned None"
code_to_word_map = {v: k for k, v in word_to_code_map.items()}
text = transcript_to_sentence(numbers, code_to_word_map)
return text
###########################################
def transcribe_punjabi_30000(speech):
text = punjaib_modle_30000(speech)["text"]
text = text.replace("[PAD]","")
if text is None:
return "Error: ASR returned None"
return text
def transcribe_punjabi_eng_model_30000(speech):
trn = Transliterator(source='pan', target='eng', build_lookup=True)
text = punjaib_modle_30000(speech)["text"]
text = text.replace("[PAD]","")
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
return sentence
def transcribe_punjabi_70000_aug(speech):
text = punjaib_modle_70000_aug(speech)["text"]
text = text.replace("<s>","")
if text is None:
return "Error: ASR returned None"
return text
def transcribe_punjabi_eng_model_70000_aug(speech):
trn = Transliterator(source='pan', target='eng', build_lookup=True)
text = punjaib_modle_70000_aug(speech)["text"]
text = text.replace("<s>","")
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
return sentence
def transcribe_punjabi_155750(speech):
text = punjaib_modle_155750(speech)["text"]
text = text.replace("[PAD]","")
if text is None:
return "Error: ASR returned None"
return text
def transcribe_punjabi_eng_model_155750(speech):
trn = Transliterator(source='pan', target='eng', build_lookup=True)
text = punjaib_modle_155750(speech)["text"]
text = text.replace("[PAD]","")
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
return sentence
###########################################
def transcribe_odiya_model1(speech):
text = odia_model1(speech)["text"]
if text is None:
return "Error: ASR returned None"
return text
def transcribe_odiya_model2(speech):
text = odia_model2(speech)["text"]
if text is None:
return "Error: ASR returned None"
return text
def transcribe_odiya_eng_model1(speech):
trn = Transliterator(source='ori', target='eng', build_lookup=True)
text = odia_model1(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
def transcribe_odiya_eng_model2(speech):
trn = Transliterator(source='ori', target='eng', build_lookup=True)
text = odia_model2(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
########################################
def cleanhtml(raw_html):
cleantext = re.sub(r'<.*?>', '', raw_html)
return cleantext
#######################################
# def transcribe_hindi(speech):
# text = p2(speech)["text"]
# if text is None:
# return "Error: ASR returned None"
# return text
def transcribe_hindi(speech):
text = p2(speech)["text"]
if text is None:
return "Error: ASR returned None"
hindi_map = {
"सेवन": "7",
"जीरो": "0",
"वन" : "1",
"टू" : "2",
"थ्री" : "3",
"त्री" : "3",
"फोर" : "4",
"फाइव": "5",
"सिक्स": "6",
"एट": "8",
"नाइन": "9",
"टेन": "10",
"एक": "1",
"दो": "2",
"तीन": "3",
"चार": "4",
"पांच": "5",
"पाँच": "5",
"छह": "6",
"छः": "6",
"सात": "7",
"आठ": "8",
"नौ": "9",
"दस": "10"
}
for hindi, num in hindi_map.items():
text = text.replace(hindi, num)
# Split the string into parts separated by spaces
parts = text.split(' ')
# Initialize an empty list to store the processed parts
processed_parts = []
# Iterate over each part
for part in parts:
# Check if the part is a number (contains only digits)
if part.isdigit():
# If the previous part was also a number, concatenate them
if processed_parts and processed_parts[-1].isdigit():
processed_parts[-1] += part
else:
processed_parts.append(part)
else:
# If the part is not a number, add it to the list as is
processed_parts.append(part)
# Join the processed parts back into a string with spaces
text = ' '.join(processed_parts)
return text
###########################################################
def transcribe_kannada(speech):
text = p3(speech)["text"]
if text is None:
return "Error: ASR returned None"
return text
def transcribe_telugu(speech):
text = p4(speech)["text"]
if text is None:
return "Error: ASR returned None"
return text
def transcribe_bangala(speech):
text = p5(speech)["text"]
if text is None:
return "Error: ASR returned None"
return text
def transcribe_assamese_LM(speech):
text = p8(speech)["text"]
text = cleanhtml(text)
if text is None:
return "Error: ASR returned None"
return text
def transcribe_assamese_model2(speech):
text = p7(speech)["text"]
text = cleanhtml(text)
if text is None:
return "Error: ASR returned None"
return text
def transcribe_ban_eng(speech):
trn = Transliterator(source='ben', target='eng', build_lookup=True)
text = p5(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
def transcribe_hin_eng(speech):
trn = Transliterator(source='hin', target='eng', build_lookup=True)
text = p2(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
def transcribe_kan_eng(speech):
trn = Transliterator(source='kan', target='eng', build_lookup=True)
text = p3(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
def transcribe_tel_eng(speech):
trn = Transliterator(source='tel', target='eng', build_lookup=True)
text = p4(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
def sel_lng(lng, mic=None, file=None):
if mic is not None:
audio = mic
elif file is not None:
audio = file
else:
return "You must either provide a mic recording or a file"
if lng == "Odiya":
return transcribe_odiya(audio)
elif lng == "Odiya-trans":
return transcribe_odiya_eng(audio)
elif lng == "Hindi-trans":
return transcribe_hin_eng(audio)
elif lng == "Hindi":
return transcribe_hindi(audio)
elif lng == "Kannada-trans":
return transcribe_kan_eng(audio)
elif lng == "Kannada":
return transcribe_kannada(audio)
elif lng == "Telugu-trans":
return transcribe_tel_eng(audio)
elif lng == "Telugu":
return transcribe_telugu(audio)
elif lng == "Bangala-trans":
return transcribe_ban_eng(audio)
elif lng == "Bangala":
return transcribe_bangala(audio)
elif lng == "Assamese-LM":
return transcribe_assamese_LM(audio)
elif lng == "Assamese-Model2":
return transcribe_assamese_model2(audio)
elif lng == "Odia_model1":
return transcribe_odiya_model1(audio)
elif lng == "Odiya_trans_model1":
return transcribe_odiya_eng_model1(audio)
elif lng == "Odia_model2":
return transcribe_odiya_model2(audio)
elif lng == "Odia_trans_model2":
return transcribe_odiya_eng_model2(audio)
elif lng == "Punjabi_Model0":
return transcribe_punjabi_30000(audio)
elif lng == "Punjabi_Model0_Trans":
return transcribe_punjabi_eng_model_30000(audio)
elif lng == "Punjabi_Model_aug":
return transcribe_punjabi_70000_aug(audio)
elif lng == "Punjabi_Model_aug_Trans":
return transcribe_punjabi_eng_model_70000_aug(audio)
elif lng == "Punjabi_Model1":
return transcribe_punjabi_155750(audio)
elif lng == "Punjabi_Model1_Trans":
return transcribe_punjabi_eng_model_155750(audio)
# Convert transcript back to sentence
# reconstructed_sentence_1 = transcript_to_sentence(numbers, code_to_word_map)
# demo=gr.Interface(
# fn=sel_lng,
# inputs=[
# gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans"],value="Hindi",label="Select Language"),
# gr.Audio(source="microphone", type="filepath"),
# gr.Audio(source= "upload", type="filepath"),
# #gr.Audio(sources="upload", type="filepath"),
# #"state"
# ],
# outputs=[
# "textbox"
# # #"state"
# ],
# title="Automatic Speech Recognition",
# description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
# ).launch()
######################################################
demo=gr.Interface(
fn=sel_lng,
inputs=[
#gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans","Kannada","Kannada-trans","Telugu","Telugu-trans","Bangala","Bangala-trans"],value="Hindi",label="Select Language"),
gr.Dropdown([
# "Hindi","Hindi-trans",
"Odia_model1","Odiya_trans_model1","Odia_model2","Odia_trans_model2"],label="Select Language"),
# "Assamese-LM","Assamese-Model2",
# "Punjabi_Model1","Punjabi_Model1_Trans","Punjabi_Model_aug","Punjabi_Model_aug_Trans"],value="Hindi",label="Select Language"),
gr.Audio(sources=["microphone","upload"], type="filepath"),
#gr.Audio(sources="upload", type="filepath"),
#"state"
],
outputs=[
"textbox"
# #"state"
],
allow_flagging="auto",
#flagging_options=["Language error", "English transliteration error", "Other"],
#flagging_callback=hf_writer,
title="Automatic Speech Recognition",
description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
).launch()
|