demoASR / app.py
cdactvm's picture
Update app.py
d4e2ce0 verified
raw
history blame
11.4 kB
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
from transformers import pipeline
import os
import re
#import torchaudio
# Initialize the speech recognition pipeline and transliterator
pipe = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")
p1 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")
p2 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_v1")
os.system('git clone https://github.com/irshadbhat/indic-trans.git')
os.system('pip install ./indic-trans/.')
#HF_TOKEN = os.getenv('HF_TOKEN')
#hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "asr_demo")
from indictrans import Transliterator
trn = Transliterator(source='ori', target='eng', build_lookup=True)
def transcribe_odiya(speech):
text = p1(speech)["text"]
if text is None:
return "Error: ASR returned None"
return text
def transcribe_hindi(speech):
text = p2(speech)["text"]
if text is None:
return "Error: ASR returned None"
return text
def transcribe_odiya_eng(speech):
trn = Transliterator(source='ori', target='eng', build_lookup=True)
text = p1(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
def transcribe_hin_eng(speech):
trn = Transliterator(source='hin', target='eng', build_lookup=True)
text = p2(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
def process_transcription(input_sentence):
word_to_code_map = {}
code_to_word_map = {}
transcript_1 = sentence_to_transcript(input_sentence, word_to_code_map)
if transcript_1 is None:
return "Error: Transcript conversion returned None"
numbers = text2int(transcript_1)
if numbers is None:
return "Error: Text to number conversion returned None"
code_to_word_map = {v: k for k, v in word_to_code_map.items()}
text = transcript_to_sentence(numbers, code_to_word_map)
return text
def sel_lng(lng, mic=None, file=None):
if mic is not None:
audio = mic
elif file is not None:
audio = file
else:
return "You must either provide a mic recording or a file"
if lng == "Odiya":
return transcribe_odiya(audio)
elif lng == "Odiya-trans":
return transcribe_odiya_eng(audio)
elif lng == "Hindi-trans":
return transcribe_hin_eng(audio)
elif lng == "Hindi":
return transcribe_hindi(audio)
# Function to replace incorrectly spelled words
def replace_words(sentence):
replacements = [
(r'\bjiro\b', 'zero'), (r'\bjero\b', 'zero'), (r'\bnn\b', 'one'),
(r'\bn\b', 'one'), (r'\bna\b', 'one'), (r'\btu\b', 'two'),
(r'\btoo\b', 'two'), (r'\bthiri\b', 'three'), (r'\bfor\b', 'four'),
(r'\bfore\b', 'four'), (r'\bfib\b', 'five'), (r'\bdublseven\b', 'double seven'),
(r'\bdubalathri\b', 'double three'), (r'\bnineeit\b', 'nine eight'),
(r'\bfipeit\b', 'five eight'), (r'\bdubal\b', 'double'), (r'\bsevenatu\b', 'seven two'),
]
for pattern, replacement in replacements:
sentence = re.sub(pattern, replacement, sentence)
return sentence
# Function to process "double" followed by a number
def process_doubles(sentence):
tokens = sentence.split()
result = []
i = 0
while i < len(tokens):
if tokens[i] in ("double", "dubal"):
if i + 1 < len(tokens):
result.append(tokens[i + 1])
result.append(tokens[i + 1])
i += 2
else:
result.append(tokens[i])
i += 1
else:
result.append(tokens[i])
i += 1
return ' '.join(result)
# Function to generate Soundex code for a word
def soundex(word):
word = word.upper()
word = ''.join(filter(str.isalpha, word))
if not word:
return None
soundex_mapping = {
'B': '1', 'F': '1', 'P': '1', 'V': '1',
'C': '2', 'G': '2', 'J': '2', 'K': '2', 'Q': '2', 'S': '2', 'X': '2', 'Z': '2',
'D': '3', 'T': '3', 'L': '4', 'M': '5', 'N': '5', 'R': '6'
}
soundex_code = word[0]
for char in word[1:]:
if char not in ('H', 'W'):
soundex_code += soundex_mapping.get(char, '0')
soundex_code = soundex_code[0] + ''.join(c for i, c in enumerate(soundex_code[1:]) if c != soundex_code[i])
soundex_code = soundex_code.replace('0', '') + '000'
return soundex_code[:4]
# Function to convert text to numerical representation
def is_number(x):
if type(x) == str:
x = x.replace(',', '')
try:
float(x)
except:
return False
return True
def text2int(textnum, numwords={}):
units = ['Z600', 'O500','T000','T600','F600','F100','S220','S150','E300','N500',
'T500', 'E415', 'T410', 'T635', 'F635', 'F135', 'S235', 'S153', 'E235','N535']
tens = ['', '', 'T537', 'T637', 'F637', 'F137', 'S230', 'S153', 'E230', 'N530']
scales = ['H536', 'T253', 'M450', 'C600']
ordinal_words = {'oh': 'Z600', 'first': 'O500', 'second': 'T000', 'third': 'T600', 'fourth': 'F600', 'fifth': 'F100',
'sixth': 'S200','seventh': 'S150','eighth': 'E230', 'ninth': 'N500', 'twelfth': 'T410'}
ordinal_endings = [('ieth', 'y'), ('th', '')]
if not numwords:
numwords['and'] = (1, 0)
for idx, word in enumerate(units): numwords[word] = (1, idx)
for idx, word in enumerate(tens): numwords[word] = (1, idx * 10)
for idx, word in enumerate(scales): numwords[word] = (10 ** (idx * 3 or 2), 0)
textnum = textnum.replace('-', ' ')
current = result = 0
curstring = ''
onnumber = False
lastunit = False
lastscale = False
def is_numword(x):
if is_number(x):
return True
if word in numwords:
return True
return False
def from_numword(x):
if is_number(x):
scale = 0
increment = int(x.replace(',', ''))
return scale, increment
return numwords[x]
for word in textnum.split():
if word in ordinal_words:
scale, increment = (1, ordinal_words[word])
current = current * scale + increment
if scale > 100:
result += current
current = 0
onnumber = True
lastunit = False
lastscale = False
else:
for ending, replacement in ordinal_endings:
if word.endswith(ending):
word = "%s%s" % (word[:-len(ending)], replacement)
if (not is_numword(word)) or (word == 'and' and not lastscale):
if onnumber:
curstring += repr(result + current) + " "
curstring += word + " "
result = current = 0
onnumber = False
lastunit = False
lastscale = False
else:
scale, increment = from_numword(word)
onnumber = True
if lastunit and (word not in scales):
curstring += repr(result + current)
result = current = 0
if scale > 1:
current = max(1, current)
current = current * scale + increment
if scale > 100:
result += current
current = 0
lastscale = False
lastunit = False
if word in scales:
lastscale = True
elif word in units:
lastunit = True
if onnumber:
curstring += repr(result + current)
return curstring
# Convert sentence to transcript using Soundex
def sentence_to_transcript(sentence, word_to_code_map):
words = sentence.split()
transcript_codes = []
for word in words:
if word not in word_to_code_map:
word_to_code_map[word] = soundex(word)
transcript_codes.append(word_to_code_map[word])
transcript = ' '.join(transcript_codes)
return transcript
# Convert transcript back to sentence using mapping
def transcript_to_sentence(transcript, code_to_word_map):
codes = transcript.split()
sentence_words = []
for code in codes:
sentence_words.append(code_to_word_map.get(code, code))
sentence = ' '.join(sentence_words)
return sentence
# # Process the audio file
# transcript = pipe("./odia_recorded/AUD-20240614-WA0004.wav")
# text_value = transcript['text']
# sentence = trn.transform(text_value)
# replaced_words = replace_words(sentence)
# processed_sentence = process_doubles(replaced_words)
# input_sentence_1 = processed_sentence
# Create empty mappings
word_to_code_map = {}
code_to_word_map = {}
# Convert sentence to transcript
# transcript_1 = sentence_to_transcript(input_sentence_1, word_to_code_map)
# Convert transcript to numerical representation
# numbers = text2int(transcript_1)
# Create reverse mapping
code_to_word_map = {v: k for k, v in word_to_code_map.items()}
# Convert transcript back to sentence
# reconstructed_sentence_1 = transcript_to_sentence(numbers, code_to_word_map)
# demo=gr.Interface(
# fn=sel_lng,
# inputs=[
# gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans"],value="Hindi",label="Select Language"),
# gr.Audio(source="microphone", type="filepath"),
# gr.Audio(source= "upload", type="filepath"),
# #gr.Audio(sources="upload", type="filepath"),
# #"state"
# ],
# outputs=[
# "textbox"
# # #"state"
# ],
# title="Automatic Speech Recognition",
# description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
# ).launch()
######################################################
demo=gr.Interface(
fn=sel_lng,
inputs=[
gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans"],value="Hindi",label="Select Language"),
gr.Audio(sources=["microphone","upload"], type="filepath"),
#gr.Audio(sources="upload", type="filepath"),
#"state"
],
outputs=[
"textbox"
# #"state"
],
allow_flagging="auto",
#flagging_options=["Language error", "English transliteration error", "Other"],
#flagging_callback=hf_writer,
title="Automatic Speech Recognition",
description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
).launch()