sagemaker
init
7e3d7f8
raw
history blame
2.51 kB
from transformers import AutoFeatureExtractor, YolosForObjectDetection
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import io
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
def infer(img, model_name):
feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}")
model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}")
img = Image.fromarray(img)
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = model(pixel_values, output_attentions=True)
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > 0.9
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
bboxes_scaled = postprocessed_outputs[0]['boxes']
res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model)
return res_img
def plot_results(pil_img, prob, boxes, model):
plt.figure(figsize=(16,10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
cl = p.argmax()
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
ax.text(xmin, ymin, text, fontsize=15,
bbox=dict(facecolor='yellow', alpha=0.5))
plt.axis('off')
return fig2img(plt.gcf())
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
description = """Object Detection with YOLOS. Choose your model and you're good to go."""
image_in = gr.components.Image()
image_out = gr.components.Image()
model_choice = gr.components.Dropdown(["yolos-tiny", "yolos-small", "yolos_base", "yolos-small-300", "yolos-small-dwr"], value="yolos-small")
Iface = gr.Interface(
fn=infer,
inputs=[image_in,model_choice],
outputs=image_out,
examples=[["examples/10_People_Marching_People_Marching_2_120.jpg"], ["examples/12_Group_Group_12_Group_Group_12_26.jpg"], ["examples/43_Row_Boat_Canoe_43_247.jpg"]],
title="Object Detection with YOLOS",
description=description,
).launch()