import gradio as gr from PIL import Image, ImageDraw from transparent_background import Remover import numpy as np from gradio_imageslider import ImageSlider def resize(img: Image, target_size_px: int): aspect_ratio = img.width / img.height if img.width > img.height: new_width = target_size_px new_height = int(target_size_px / aspect_ratio) else: new_height = target_size_px new_width = int(target_size_px * aspect_ratio) img = img.resize((new_width, new_height)) return img def infer(img: Image): img_resized = resize(img, 512) remover = Remover(mode="fast") masked_image = remover.process(img_resized, type="map") gray_image = masked_image.convert("L") binary_image = gray_image.point(lambda x: 0 if x < 128 else 255, "1") image_array = np.array(binary_image) white_pixels = np.where(image_array == True) x_coords = white_pixels[1] y_coords = white_pixels[0] min_x = np.min(x_coords) max_x = np.max(x_coords) min_y = np.min(y_coords) max_y = np.max(y_coords) draw = ImageDraw.Draw(img_resized) draw.rectangle([(min_x, min_y), (max_x, max_y)], outline="red", width=2) return img_resized, masked_image gr.Interface( fn=infer, description=""" This space performs salient object detection on an image uploaded by the user. I.e. it will detect the object(s) in the image foreground and draw a red rectangle around it. It uses the [transparent-background](https://github.com/plemeri/transparent-background) library, which is built on [InSPyReNet](https://github.com/plemeri/inspyrenet). """, inputs=gr.components.Image(type="pil", label="Input Image"), outputs=ImageSlider(label="Output", type="pil"), title="Salient Object Detection", ).launch()