Spaces:
Running
Running
talexm
commited on
Commit
·
9a25cef
1
Parent(s):
f7e7778
adding example for query protection search
Browse files
rag_sec/README.md
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# RAG-Chagu Test Suite
|
3 |
+
|
4 |
+
## Overview
|
5 |
+
This project demonstrates a RAG system enhanced with Chagu features for:
|
6 |
+
- Data Poisoning Detection
|
7 |
+
- Model Drift Handling
|
8 |
+
- Query Injection Attack Prevention
|
9 |
+
- Adversarial Embedding Detection
|
10 |
+
|
11 |
+
## Setup
|
12 |
+
|
13 |
+
### Install Dependencies
|
14 |
+
```bash
|
15 |
+
pip install -r requirements.txt
|
16 |
+
```
|
17 |
+
|
18 |
+
### Run the Test Suite
|
19 |
+
```bash
|
20 |
+
python rag_chagu_demo.py
|
21 |
+
```
|
22 |
+
|
23 |
+
## Requirements
|
24 |
+
- Python 3.8 or higher
|
rag_sec/__init__.py
ADDED
File without changes
|
rag_sec/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (150 Bytes). View file
|
|
rag_sec/__pycache__/rag_chagu_demo.cpython-38-pytest-8.3.2.pyc
ADDED
Binary file (3.5 kB). View file
|
|
rag_sec/rag_chagu_demo.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from difflib import get_close_matches
|
4 |
+
|
5 |
+
class DocumentSearcher:
|
6 |
+
def __init__(self):
|
7 |
+
self.documents = []
|
8 |
+
self.malicious_patterns = ["DROP TABLE", "SELECT *", "INSERT INTO", "DELETE FROM", "--", ";"]
|
9 |
+
|
10 |
+
def load_imdb_data(self):
|
11 |
+
# Define the dataset path using the HOME environment variable
|
12 |
+
home_dir = Path(os.getenv("HOME", "/")) # Fallback to root if HOME is not set
|
13 |
+
data_dir = home_dir / "data-sets/aclImdb/train"
|
14 |
+
|
15 |
+
pos_dir = data_dir / "pos"
|
16 |
+
neg_dir = data_dir / "neg"
|
17 |
+
|
18 |
+
print(f"Looking for positive reviews in: {pos_dir}")
|
19 |
+
print(f"Looking for negative reviews in: {neg_dir}")
|
20 |
+
|
21 |
+
if not pos_dir.exists() or not any(pos_dir.iterdir()):
|
22 |
+
print("No positive reviews found.")
|
23 |
+
if not neg_dir.exists() or not any(neg_dir.iterdir()):
|
24 |
+
print("No negative reviews found.")
|
25 |
+
|
26 |
+
# Load positive reviews
|
27 |
+
for filename in pos_dir.iterdir():
|
28 |
+
with open(filename, "r", encoding="utf-8") as file:
|
29 |
+
self.documents.append(file.read())
|
30 |
+
|
31 |
+
# Load negative reviews
|
32 |
+
for filename in neg_dir.iterdir():
|
33 |
+
with open(filename, "r", encoding="utf-8") as file:
|
34 |
+
self.documents.append(file.read())
|
35 |
+
|
36 |
+
print(f"Loaded {len(self.documents)} movie reviews from IMDB dataset.")
|
37 |
+
|
38 |
+
def load_txt_files(self, txt_dir=None):
|
39 |
+
if txt_dir is None:
|
40 |
+
home_dir = Path(os.getenv("HOME", "/"))
|
41 |
+
txt_dir = home_dir / "data-sets/txt-files/"
|
42 |
+
|
43 |
+
if not txt_dir.exists():
|
44 |
+
print("No .txt files directory found.")
|
45 |
+
return
|
46 |
+
|
47 |
+
# Load all .txt files
|
48 |
+
for filename in txt_dir.glob("*.txt"):
|
49 |
+
with open(filename, "r", encoding="utf-8") as file:
|
50 |
+
self.documents.append(file.read())
|
51 |
+
|
52 |
+
print(f"Loaded additional {len(self.documents)} documents from .txt files.")
|
53 |
+
|
54 |
+
def is_query_malicious(self, query):
|
55 |
+
for pattern in self.malicious_patterns:
|
56 |
+
if pattern.lower() in query.lower():
|
57 |
+
print(f"Warning: Malicious query detected - {pattern}")
|
58 |
+
return True
|
59 |
+
return False
|
60 |
+
|
61 |
+
def search_documents(self, query):
|
62 |
+
if self.is_query_malicious(query):
|
63 |
+
return [{"document": "ANOMALY: Query blocked due to detected malicious content.", "similarity": 0.0}]
|
64 |
+
|
65 |
+
# Use fuzzy matching for normal queries
|
66 |
+
matches = get_close_matches(query, self.documents, n=5, cutoff=0.3)
|
67 |
+
|
68 |
+
if not matches:
|
69 |
+
return [{"document": "No matching documents found.", "similarity": 0.0}]
|
70 |
+
|
71 |
+
return [{"document": match[:100] + "..."} for match in matches]
|
72 |
+
|
73 |
+
# Test the system with normal and malicious queries
|
74 |
+
def test_document_search():
|
75 |
+
searcher = DocumentSearcher()
|
76 |
+
|
77 |
+
# Load the IMDB movie reviews
|
78 |
+
searcher.load_imdb_data()
|
79 |
+
|
80 |
+
# Load additional .txt files
|
81 |
+
searcher.load_txt_files()
|
82 |
+
|
83 |
+
# Perform a normal query
|
84 |
+
normal_query = "This movie had great acting and a compelling storyline."
|
85 |
+
normal_results = searcher.search_documents(normal_query)
|
86 |
+
print("Normal Query Results:")
|
87 |
+
for result in normal_results:
|
88 |
+
print(f"Document: {result['document']}")
|
89 |
+
|
90 |
+
# Perform a query injection attack
|
91 |
+
malicious_query = "DROP TABLE reviews; SELECT * FROM confidential_data;"
|
92 |
+
attack_results = searcher.search_documents(malicious_query)
|
93 |
+
print("\nMalicious Query Results:")
|
94 |
+
for result in attack_results:
|
95 |
+
print(f"Document: {result['document']}")
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
test_document_search()
|
rag_sec/requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
sentence-transformers
|
3 |
+
numpy
|
4 |
+
scikit-learn
|
5 |
+
faiss-cpu
|
6 |
+
pandas
|
sec-rag-model/__init__.py
ADDED
File without changes
|