talexm commited on
Commit
fdc732d
·
1 Parent(s): aeb8626

adding LLM for RAg

Browse files
falocon_api/README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### RAG Demo: AI-Powered Document Search with Generative Response
2
+ This project showcases a Retrieval-Augmented Generation (RAG) implementation using
3
+ SentenceTransformer for semantic search and GPT-2 (or a similar generative model)
4
+ for response generation. The system combines the power of semantic search with AI-driven text generation,
5
+ providing relevant answers based on a collection of text documents.
6
+
7
+ ## Project Overview
8
+ The Chagu RAG Demo aims to solve the problem of efficient document retrieval and provide contextual
9
+ responses using Generative AI. It supports secure document search and offers additional protection
10
+ against malicious queries using semantic analysis. The project is built with the following goals:
11
+
12
+ # Semantic Search: Retrieve the most relevant documents based on user queries using embeddings.
13
+ # Generative AI Response: Generate a coherent and context-aware answer using a pre-trained text generation model.
14
+ # Anomaly Detection: Detect potentially harmful queries (e.g., SQL injections) and block them.
15
+
16
+ ### Features
17
+ # Embedding-based Document Ingestion: Efficiently process and store text document embeddings in a local SQLite database.
18
+ # Semantic Search: Uses cosine similarity with SentenceTransformer embeddings for accurate information retrieval.
19
+ # Text Generation: Leverages GPT-2 or distilgpt2 for generating responses based on the retrieved context.
20
+ # Security: Includes basic query validation to prevent malicious input (e.g., SQL injection detection).
21
+
22
+ Technologies Used
23
+ SentenceTransformer: For generating semantic embeddings of text documents.
24
+ Transformers: Provides the generative model (e.g., we have a wide range of models here: https://huggingface.co/models?sort=trending&search=distilgpt2).
25
+ SQLite: A lightweight database for storing embeddings and document content.
26
+ Scikit-learn: Used for calculating cosine similarity.
27
+ NumPy: Efficient numerical operations.
28
+
29
+ Installation
30
+
31
+ Clone the Repository:
32
+
33
+ bash
34
+ ```
35
+ git clone https://github.com/yourusername/chagu-rag-demo.git
36
+ cd chagu-rag-demo
37
+ ```
38
+ Create a Virtual Environment:
39
+
40
+ bash
41
+ ```
42
+ python3 -m venv .venv
43
+ source .venv/bin/activate
44
+ ```
45
+ Install Dependencies:
46
+
47
+ bash
48
+ ```
49
+ pip install -r requirements.txt
50
+ ```
51
+ Authenticate with Hugging Face (if needed):
52
+
53
+ bash
54
+ ```
55
+ huggingface-cli login
56
+ ```
57
+
58
+ Setup and Dataset
59
+ Download and Prepare the Dataset:
60
+
61
+ You can use the IMDB Movie Reviews dataset or any other text files.
62
+ Place your .txt files in the documents/ directory or specify a custom path.
63
+ Ingest Files:
64
+
65
+ The script will process all .txt files in the specified directory and store embeddings in a local SQLite database.
66
+ bash
67
+ ```
68
+ python embededGeneratorRAG.py
69
+ ```
70
+
71
+ Usage
72
+ Ingest Documents
73
+ Ingest .txt files from the documents/ directory:
74
+
75
+ python
76
+ ```
77
+ embedding_generator = EmbeddingGenerator()
78
+ embedding_generator.ingest_files("documents")
79
+ ```
80
+
81
+ Perform a Search Query
82
+ Run a semantic search query and generate a response:
83
+
84
+ python
85
+ ```
86
+ query = "How can I secure my database against SQL injection?"
87
+ response = embedding_generator.find_most_similar_and_generate(query)
88
+ print("Generated Response:")
89
+ print(response)
90
+ ```
91
+ Example Output
92
+ sql
93
+ ```
94
+ Generated Response:
95
+ To prevent SQL injection, you should use prepared statements and parameterized queries.
96
+ Avoid constructing SQL queries directly using user input.
97
+ ```
98
+ File Structure
99
+ bash
100
+ ```
101
+ chagu-rag-demo/
102
+ ├── embeddings.db # SQLite database for storing embeddings
103
+ ├── documents/ # Directory containing .txt files for ingestion
104
+ ├── rag_chagu_demo.py # Main script with RAG implementation
105
+ ├── embededGeneratorRAG.py # Core Embedding Generator class
106
+ ├── requirements.txt # Python dependencies
107
+ ├── README.md # Project documentation
108
+ Configuration
109
+ ```
110
+ You can update the following configurations in the EmbeddingGenerator class:
111
+
112
+ Model Names: Change model_name or gen_model to use different embedding or generative models.
113
+ Database Path: Specify a custom path for the SQLite database.
114
+
115
+ python
116
+ ```
117
+ embedding_generator = EmbeddingGenerator(model_name="all-MiniLM-L6-v2", gen_model="distilgpt2", db_path="custom_embeddings.db")
118
+ ```
119
+ ### Potential Improvements
120
+ FAISS Integration for Scalability:
121
+
122
+ Replace the current SQLite-based retrieval with FAISS for efficient and scalable vector search.
123
+ Enhanced Security:
124
+
125
+ Implement more robust query validation using a fine-tuned BERT model to detect harmful or suspicious inputs.
126
+ Deployment on Hugging Face Spaces:
127
+
128
+ Create an interactive demo using Streamlit or Gradio for showcasing the project on Hugging Face Spaces.
129
+ Known Issues
130
+ Input Truncation Warning: If the input text is too long, you may see a warning about truncation. This is handled using truncation=True, but it may affect very long queries.
131
+
132
+ Model Availability: Ensure you are using a publicly available model from Hugging Face. If you encounter a 404 Not Found error, check the model identifier.
133
+
134
+ ## Contributing
135
+ Contributions are welcome! Please open an issue or submit a pull request if you would like to improve the project.
136
+
137
+ ## Fork the repository.
138
+ Create a new feature branch.
139
+ Submit your changes via a pull request.
140
+ License
141
+ This project is licensed under the MIT License - see the LICENSE file for details.
142
+
143
+ ## Acknowledgments
144
+ Hugging Face for the amazing models and NLP tools.
145
+ Scikit-learn for efficient similarity computation.
146
+ SQLite for providing a lightweight database solution.
falocon_api/__init__.py ADDED
File without changes
falocon_api/embeddingGenerator.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sqlite3
3
+ import numpy as np
4
+ from sentence_transformers import SentenceTransformer
5
+ from sklearn.metrics.pairwise import cosine_similarity
6
+ from typing import List, Dict
7
+
8
+ class EmbeddingGenerator:
9
+ def __init__(self, model_name: str = "all-MiniLM-L6-v2", db_path: str = "embeddings.db"):
10
+ self.model = SentenceTransformer(model_name)
11
+ self.db_path = db_path
12
+ self._initialize_db()
13
+ print(f"Loaded embedding model: {model_name}")
14
+
15
+ def _initialize_db(self):
16
+ # Connect to SQLite database and create table
17
+ self.conn = sqlite3.connect(self.db_path)
18
+ self.cursor = self.conn.cursor()
19
+ self.cursor.execute("""
20
+ CREATE TABLE IF NOT EXISTS embeddings (
21
+ filename TEXT PRIMARY KEY,
22
+ content TEXT,
23
+ embedding BLOB
24
+ )
25
+ """)
26
+ self.conn.commit()
27
+
28
+ def generate_embedding(self, text: str) -> np.ndarray:
29
+ try:
30
+ embedding = self.model.encode(text, convert_to_numpy=True)
31
+ return embedding
32
+ except Exception as e:
33
+ print(f"Error generating embedding: {str(e)}")
34
+ return np.array([])
35
+
36
+ def ingest_files(self, directory: str):
37
+ for filename in os.listdir(directory):
38
+ if filename.endswith(".txt"):
39
+ file_path = os.path.join(directory, filename)
40
+ with open(file_path, 'r') as f:
41
+ content = f.read()
42
+ embedding = self.generate_embedding(content)
43
+ self._store_embedding(filename, content, embedding)
44
+
45
+ def _store_embedding(self, filename: str, content: str, embedding: np.ndarray):
46
+ try:
47
+ self.cursor.execute("INSERT OR REPLACE INTO embeddings (filename, content, embedding) VALUES (?, ?, ?)",
48
+ (filename, content, embedding.tobytes()))
49
+ self.conn.commit()
50
+ except Exception as e:
51
+ print(f"Error storing embedding: {str(e)}")
52
+
53
+ def load_embeddings(self) -> List[Dict]:
54
+ self.cursor.execute("SELECT filename, content, embedding FROM embeddings")
55
+ rows = self.cursor.fetchall()
56
+ documents = []
57
+ for filename, content, embedding_blob in rows:
58
+ embedding = np.frombuffer(embedding_blob, dtype=np.float32)
59
+ documents.append({"filename": filename, "content": content, "embedding": embedding})
60
+ return documents
61
+
62
+ def compute_similarity(self, query_embedding: np.ndarray, document_embeddings: List[np.ndarray]) -> List[float]:
63
+ try:
64
+ similarities = cosine_similarity([query_embedding], document_embeddings)[0]
65
+ return similarities.tolist()
66
+ except Exception as e:
67
+ print(f"Error computing similarity: {str(e)}")
68
+ return []
69
+
70
+ def find_most_similar(self, query: str, top_k: int = 5) -> List[Dict]:
71
+ query_embedding = self.generate_embedding(query)
72
+ documents = self.load_embeddings()
73
+
74
+ if query_embedding.size == 0 or len(documents) == 0:
75
+ print("Error: Invalid embeddings or no documents found.")
76
+ return []
77
+
78
+ document_embeddings = [doc["embedding"] for doc in documents]
79
+ similarities = self.compute_similarity(query_embedding, document_embeddings)
80
+ ranked_results = sorted(
81
+ [{"filename": doc["filename"], "content": doc["content"][:100], "similarity": sim}
82
+ for doc, sim in zip(documents, similarities)],
83
+ key=lambda x: x["similarity"],
84
+ reverse=True
85
+ )
86
+ return ranked_results[:top_k]
87
+
88
+ # Example Usage
89
+ if __name__ == "__main__":
90
+ # Initialize the embedding generator and ingest .txt files from the 'documents' directory
91
+ embedding_generator = EmbeddingGenerator()
92
+ embedding_generator.ingest_files(os.path.expanduser("~/data-sets/aclImdb/train/"))
93
+
94
+ # Perform a search query
95
+ query = "What can be used for document search?"
96
+ results = embedding_generator.find_most_similar(query, top_k=3)
97
+
98
+ print("Search Results:")
99
+ for result in results:
100
+ print(f"Filename: {result['filename']}, Similarity: {result['similarity']:.4f}")
101
+ print(f"Snippet: {result['content']}\n")
falocon_api/embededGeneratorRAG.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sqlite3
3
+ import numpy as np
4
+ from sentence_transformers import SentenceTransformer
5
+ from sklearn.metrics.pairwise import cosine_similarity
6
+ from transformers import pipeline
7
+ from typing import List, Dict
8
+
9
+ class EmbeddingGenerator:
10
+ def __init__(self, model_name: str = "all-MiniLM-L6-v2", gen_model: str = "distilgpt2", db_path: str = "embeddings.db"):
11
+ self.model = SentenceTransformer(model_name)
12
+ self.generator = pipeline("text-generation", model=gen_model)
13
+ self.db_path = db_path
14
+ self._initialize_db()
15
+ print(f"Loaded embedding model: {model_name}")
16
+ print(f"Loaded generative model: {gen_model}")
17
+
18
+ def _initialize_db(self):
19
+ # Connect to SQLite database and create table
20
+ self.conn = sqlite3.connect(self.db_path)
21
+ self.cursor = self.conn.cursor()
22
+ self.cursor.execute("""
23
+ CREATE TABLE IF NOT EXISTS embeddings (
24
+ filename TEXT PRIMARY KEY,
25
+ content TEXT,
26
+ embedding BLOB
27
+ )
28
+ """)
29
+ self.conn.commit()
30
+
31
+ def generate_embedding(self, text: str) -> np.ndarray:
32
+ try:
33
+ embedding = self.model.encode(text, convert_to_numpy=True)
34
+ return embedding
35
+ except Exception as e:
36
+ print(f"Error generating embedding: {str(e)}")
37
+ return np.array([])
38
+
39
+ def ingest_files(self, directory: str):
40
+ for filename in os.listdir(directory):
41
+ if filename.endswith(".txt"):
42
+ file_path = os.path.join(directory, filename)
43
+ with open(file_path, 'r') as f:
44
+ content = f.read()
45
+ embedding = self.generate_embedding(content)
46
+ self._store_embedding(filename, content, embedding)
47
+
48
+ def _store_embedding(self, filename: str, content: str, embedding: np.ndarray):
49
+ try:
50
+ self.cursor.execute("INSERT OR REPLACE INTO embeddings (filename, content, embedding) VALUES (?, ?, ?)",
51
+ (filename, content, embedding.tobytes()))
52
+ self.conn.commit()
53
+ except Exception as e:
54
+ print(f"Error storing embedding: {str(e)}")
55
+
56
+ def load_embeddings(self) -> List[Dict]:
57
+ self.cursor.execute("SELECT filename, content, embedding FROM embeddings")
58
+ rows = self.cursor.fetchall()
59
+ documents = []
60
+ for filename, content, embedding_blob in rows:
61
+ embedding = np.frombuffer(embedding_blob, dtype=np.float32)
62
+ documents.append({"filename": filename, "content": content, "embedding": embedding})
63
+ return documents
64
+
65
+ def compute_similarity(self, query_embedding: np.ndarray, document_embeddings: List[np.ndarray]) -> List[float]:
66
+ try:
67
+ similarities = cosine_similarity([query_embedding], document_embeddings)[0]
68
+ return similarities.tolist()
69
+ except Exception as e:
70
+ print(f"Error computing similarity: {str(e)}")
71
+ return []
72
+
73
+ def find_most_similar(self, query: str, top_k: int = 5) -> List[Dict]:
74
+ query_embedding = self.generate_embedding(query)
75
+ documents = self.load_embeddings()
76
+
77
+ if query_embedding.size == 0 or len(documents) == 0:
78
+ print("Error: Invalid embeddings or no documents found.")
79
+ return []
80
+
81
+ document_embeddings = [doc["embedding"] for doc in documents]
82
+ similarities = self.compute_similarity(query_embedding, document_embeddings)
83
+ ranked_results = sorted(
84
+ [{"filename": doc["filename"], "content": doc["content"][:100], "similarity": sim}
85
+ for doc, sim in zip(documents, similarities)],
86
+ key=lambda x: x["similarity"],
87
+ reverse=True
88
+ )
89
+ return ranked_results[:top_k]
90
+
91
+ def generate_response(self, query: str, top_k_docs: List[str]) -> str:
92
+ # Combine the query with the retrieved documents for context
93
+ context = " ".join(top_k_docs)
94
+ input_text = f"Query: {query}\nContext: {context}\nAnswer:"
95
+ # Generate a response using the generative model
96
+ response = self.generator(input_text, max_length=1000, num_return_sequences=1)
97
+ return response[0]["generated_text"]
98
+
99
+ def find_most_similar_and_generate(self, query: str, top_k: int = 5) -> str:
100
+ top_k_results = self.find_most_similar(query, top_k)
101
+ top_k_docs = [result["content"] for result in top_k_results]
102
+ response = self.generate_response(query, top_k_docs)
103
+ return response
104
+
105
+ # Example Usage
106
+ if __name__ == "__main__":
107
+ # Initialize the embedding generator with RAG capabilities and ingest .txt files from the 'documents' directory
108
+ embedding_generator = EmbeddingGenerator()
109
+ embedding_generator.ingest_files(os.path.expanduser("~/data-sets/aclImdb/train/"))
110
+
111
+ # Perform a search query with RAG response generation
112
+ query = "find user comments tt0118866"
113
+ response = embedding_generator.find_most_similar_and_generate(query)
114
+
115
+ print("Generated Response:")
116
+ print(response)