Spaces:
Runtime error
Runtime error
chaitanya9
commited on
Commit
·
27bf1d6
1
Parent(s):
9a38ba2
Upload data_extractor.py
Browse files- data_extractor.py +249 -0
data_extractor.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import pickle
|
5 |
+
import tqdm
|
6 |
+
import os
|
7 |
+
|
8 |
+
from utils import get_label, extract_feature, get_first_letters
|
9 |
+
from collections import defaultdict
|
10 |
+
|
11 |
+
|
12 |
+
class AudioExtractor:
|
13 |
+
"""A class that is used to featurize audio clips, and provide
|
14 |
+
them to the machine learning algorithms for training and testing"""
|
15 |
+
def __init__(self, audio_config=None, verbose=1, features_folder_name="features", classification=True,
|
16 |
+
emotions=['sad', 'neutral', 'happy'], balance=True):
|
17 |
+
"""
|
18 |
+
Params:
|
19 |
+
audio_config (dict): the dictionary that indicates what features to extract from the audio file,
|
20 |
+
default is {'mfcc': True, 'chroma': True, 'mel': True, 'contrast': False, 'tonnetz': False}
|
21 |
+
(i.e mfcc, chroma and mel)
|
22 |
+
verbose (bool/int): verbosity level, 0 for silence, 1 for info, default is 1
|
23 |
+
features_folder_name (str): the folder to store output features extracted, default is "features".
|
24 |
+
classification (bool): whether it is a classification or regression, default is True (i.e classification)
|
25 |
+
emotions (list): list of emotions to be extracted, default is ['sad', 'neutral', 'happy']
|
26 |
+
balance (bool): whether to balance dataset (both training and testing), default is True
|
27 |
+
"""
|
28 |
+
self.audio_config = audio_config if audio_config else {'mfcc': True, 'chroma': True, 'mel': True, 'contrast': False, 'tonnetz': False}
|
29 |
+
self.verbose = verbose
|
30 |
+
self.features_folder_name = features_folder_name
|
31 |
+
self.classification = classification
|
32 |
+
self.emotions = emotions
|
33 |
+
self.balance = balance
|
34 |
+
# input dimension
|
35 |
+
self.input_dimension = None
|
36 |
+
|
37 |
+
def _load_data(self, desc_files, partition, shuffle):
|
38 |
+
self.load_metadata_from_desc_file(desc_files, partition)
|
39 |
+
# balancing the datasets ( both training or testing )
|
40 |
+
if partition == "train" and self.balance:
|
41 |
+
self.balance_training_data()
|
42 |
+
elif partition == "test" and self.balance:
|
43 |
+
self.balance_testing_data()
|
44 |
+
else:
|
45 |
+
if self.balance:
|
46 |
+
raise TypeError("Invalid partition, must be either train/test")
|
47 |
+
if shuffle:
|
48 |
+
self.shuffle_data_by_partition(partition)
|
49 |
+
|
50 |
+
def load_train_data(self, desc_files=["train_speech.csv"], shuffle=False):
|
51 |
+
"""Loads training data from the metadata files `desc_files`"""
|
52 |
+
self._load_data(desc_files, "train", shuffle)
|
53 |
+
|
54 |
+
def load_test_data(self, desc_files=["test_speech.csv"], shuffle=False):
|
55 |
+
"""Loads testing data from the metadata files `desc_files`"""
|
56 |
+
self._load_data(desc_files, "test", shuffle)
|
57 |
+
|
58 |
+
def shuffle_data_by_partition(self, partition):
|
59 |
+
if partition == "train":
|
60 |
+
self.train_audio_paths, self.train_emotions, self.train_features = shuffle_data(self.train_audio_paths,
|
61 |
+
self.train_emotions, self.train_features)
|
62 |
+
elif partition == "test":
|
63 |
+
self.test_audio_paths, self.test_emotions, self.test_features = shuffle_data(self.test_audio_paths,
|
64 |
+
self.test_emotions, self.test_features)
|
65 |
+
else:
|
66 |
+
raise TypeError("Invalid partition, must be either train/test")
|
67 |
+
|
68 |
+
def load_metadata_from_desc_file(self, desc_files, partition):
|
69 |
+
"""Read metadata from a CSV file & Extract and loads features of audio files
|
70 |
+
Params:
|
71 |
+
desc_files (list): list of description files (csv files) to read from
|
72 |
+
partition (str): whether is "train" or "test"
|
73 |
+
"""
|
74 |
+
# empty dataframe
|
75 |
+
df = pd.DataFrame({'path': [], 'emotion': []})
|
76 |
+
for desc_file in desc_files:
|
77 |
+
# concat dataframes
|
78 |
+
df = pd.concat((df, pd.read_csv(desc_file)), sort=False)
|
79 |
+
if self.verbose:
|
80 |
+
print("[*] Loading audio file paths and its corresponding labels...")
|
81 |
+
# get columns
|
82 |
+
audio_paths, emotions = list(df['path']), list(df['emotion'])
|
83 |
+
# if not classification, convert emotions to numbers
|
84 |
+
if not self.classification:
|
85 |
+
# so naive and need to be implemented
|
86 |
+
# in a better way
|
87 |
+
if len(self.emotions) == 3:
|
88 |
+
self.categories = {'sad': 1, 'neutral': 2, 'happy': 3}
|
89 |
+
elif len(self.emotions) == 5:
|
90 |
+
self.categories = {'angry': 1, 'sad': 2, 'neutral': 3, 'ps': 4, 'happy': 5}
|
91 |
+
else:
|
92 |
+
raise TypeError("Regression is only for either ['sad', 'neutral', 'happy'] or ['angry', 'sad', 'neutral', 'ps', 'happy']")
|
93 |
+
emotions = [ self.categories[e] for e in emotions ]
|
94 |
+
# make features folder if does not exist
|
95 |
+
if not os.path.isdir(self.features_folder_name):
|
96 |
+
os.mkdir(self.features_folder_name)
|
97 |
+
# get label for features
|
98 |
+
label = get_label(self.audio_config)
|
99 |
+
# construct features file name
|
100 |
+
n_samples = len(audio_paths)
|
101 |
+
first_letters = get_first_letters(self.emotions)
|
102 |
+
name = os.path.join(self.features_folder_name, f"{partition}_{label}_{first_letters}_{n_samples}.npy")
|
103 |
+
if os.path.isfile(name):
|
104 |
+
# if file already exists, just load then
|
105 |
+
if self.verbose:
|
106 |
+
print("[+] Feature file already exists, loading...")
|
107 |
+
features = np.load(name)
|
108 |
+
else:
|
109 |
+
# file does not exist, extract those features and dump them into the file
|
110 |
+
features = []
|
111 |
+
append = features.append
|
112 |
+
for audio_file in tqdm.tqdm(audio_paths, f"Extracting features for {partition}"):
|
113 |
+
feature = extract_feature(audio_file, **self.audio_config)
|
114 |
+
if self.input_dimension is None:
|
115 |
+
self.input_dimension = feature.shape[0]
|
116 |
+
append(feature)
|
117 |
+
# convert to numpy array
|
118 |
+
features = np.array(features)
|
119 |
+
# save it
|
120 |
+
np.save(name, features)
|
121 |
+
if partition == "train":
|
122 |
+
try:
|
123 |
+
self.train_audio_paths
|
124 |
+
except AttributeError:
|
125 |
+
self.train_audio_paths = audio_paths
|
126 |
+
self.train_emotions = emotions
|
127 |
+
self.train_features = features
|
128 |
+
else:
|
129 |
+
if self.verbose:
|
130 |
+
print("[*] Adding additional training samples")
|
131 |
+
self.train_audio_paths += audio_paths
|
132 |
+
self.train_emotions += emotions
|
133 |
+
self.train_features = np.vstack((self.train_features, features))
|
134 |
+
elif partition == "test":
|
135 |
+
try:
|
136 |
+
self.test_audio_paths
|
137 |
+
except AttributeError:
|
138 |
+
self.test_audio_paths = audio_paths
|
139 |
+
self.test_emotions = emotions
|
140 |
+
self.test_features = features
|
141 |
+
else:
|
142 |
+
if self.verbose:
|
143 |
+
print("[*] Adding additional testing samples")
|
144 |
+
self.test_audio_paths += audio_paths
|
145 |
+
self.test_emotions += emotions
|
146 |
+
self.test_features = np.vstack((self.test_features, features))
|
147 |
+
else:
|
148 |
+
raise TypeError("Invalid partition, must be either train/test")
|
149 |
+
|
150 |
+
def _balance_data(self, partition):
|
151 |
+
if partition == "train":
|
152 |
+
emotions = self.train_emotions
|
153 |
+
features = self.train_features
|
154 |
+
audio_paths = self.train_audio_paths
|
155 |
+
elif partition == "test":
|
156 |
+
emotions = self.test_emotions
|
157 |
+
features = self.test_features
|
158 |
+
audio_paths = self.test_audio_paths
|
159 |
+
else:
|
160 |
+
raise TypeError("Invalid partition, must be either train/test")
|
161 |
+
|
162 |
+
count = []
|
163 |
+
if self.classification:
|
164 |
+
for emotion in self.emotions:
|
165 |
+
count.append(len([ e for e in emotions if e == emotion]))
|
166 |
+
else:
|
167 |
+
# regression, take actual numbers, not label emotion
|
168 |
+
for emotion in self.categories.values():
|
169 |
+
count.append(len([ e for e in emotions if e == emotion]))
|
170 |
+
# get the minimum data samples to balance to
|
171 |
+
minimum = min(count)
|
172 |
+
if minimum == 0:
|
173 |
+
# won't balance, otherwise 0 samples will be loaded
|
174 |
+
print("[!] One class has 0 samples, setting balance to False")
|
175 |
+
self.balance = False
|
176 |
+
return
|
177 |
+
if self.verbose:
|
178 |
+
print("[*] Balancing the dataset to the minimum value:", minimum)
|
179 |
+
d = defaultdict(list)
|
180 |
+
if self.classification:
|
181 |
+
counter = {e: 0 for e in self.emotions }
|
182 |
+
else:
|
183 |
+
counter = { e: 0 for e in self.categories.values() }
|
184 |
+
for emotion, feature, audio_path in zip(emotions, features, audio_paths):
|
185 |
+
if counter[emotion] >= minimum:
|
186 |
+
# minimum value exceeded
|
187 |
+
continue
|
188 |
+
counter[emotion] += 1
|
189 |
+
d[emotion].append((feature, audio_path))
|
190 |
+
|
191 |
+
emotions, features, audio_paths = [], [], []
|
192 |
+
for emotion, features_audio_paths in d.items():
|
193 |
+
for feature, audio_path in features_audio_paths:
|
194 |
+
emotions.append(emotion)
|
195 |
+
features.append(feature)
|
196 |
+
audio_paths.append(audio_path)
|
197 |
+
|
198 |
+
if partition == "train":
|
199 |
+
self.train_emotions = emotions
|
200 |
+
self.train_features = features
|
201 |
+
self.train_audio_paths = audio_paths
|
202 |
+
elif partition == "test":
|
203 |
+
self.test_emotions = emotions
|
204 |
+
self.test_features = features
|
205 |
+
self.test_audio_paths = audio_paths
|
206 |
+
else:
|
207 |
+
raise TypeError("Invalid partition, must be either train/test")
|
208 |
+
|
209 |
+
def balance_training_data(self):
|
210 |
+
self._balance_data("train")
|
211 |
+
|
212 |
+
def balance_testing_data(self):
|
213 |
+
self._balance_data("test")
|
214 |
+
|
215 |
+
|
216 |
+
def shuffle_data(audio_paths, emotions, features):
|
217 |
+
""" Shuffle the data (called after making a complete pass through
|
218 |
+
training or validation data during the training process)
|
219 |
+
Params:
|
220 |
+
audio_paths (list): Paths to audio clips
|
221 |
+
emotions (list): Emotions in each audio clip
|
222 |
+
features (list): features audio clips
|
223 |
+
"""
|
224 |
+
p = np.random.permutation(len(audio_paths))
|
225 |
+
audio_paths = [audio_paths[i] for i in p]
|
226 |
+
emotions = [emotions[i] for i in p]
|
227 |
+
features = [features[i] for i in p]
|
228 |
+
return audio_paths, emotions, features
|
229 |
+
|
230 |
+
|
231 |
+
def load_data(train_desc_files, test_desc_files, audio_config=None, classification=True, shuffle=True,
|
232 |
+
balance=True, emotions=['sad', 'neutral', 'happy']):
|
233 |
+
# instantiate the class
|
234 |
+
audiogen = AudioExtractor(audio_config=audio_config, classification=classification, emotions=emotions,
|
235 |
+
balance=balance, verbose=0)
|
236 |
+
# Loads training data
|
237 |
+
audiogen.load_train_data(train_desc_files, shuffle=shuffle)
|
238 |
+
# Loads testing data
|
239 |
+
audiogen.load_test_data(test_desc_files, shuffle=shuffle)
|
240 |
+
# X_train, X_test, y_train, y_test
|
241 |
+
return {
|
242 |
+
"X_train": np.array(audiogen.train_features),
|
243 |
+
"X_test": np.array(audiogen.test_features),
|
244 |
+
"y_train": np.array(audiogen.train_emotions),
|
245 |
+
"y_test": np.array(audiogen.test_emotions),
|
246 |
+
"train_audio_paths": audiogen.train_audio_paths,
|
247 |
+
"test_audio_paths": audiogen.test_audio_paths,
|
248 |
+
"balance": audiogen.balance,
|
249 |
+
}
|