Spaces:
Sleeping
Sleeping
import logging | |
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from sentence_transformers import SentenceTransformer | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain.prompts import PromptTemplate | |
from langchain_together import Together | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
import streamlit as st | |
import os | |
from dotenv import load_dotenv | |
import warnings | |
logging.basicConfig(level=logging.DEBUG) # Logs at DEBUG level and above | |
logger = logging.getLogger(__name__) | |
logger.debug("Starting Streamlit app...") | |
# Suppress PyTorch FutureWarning | |
warnings.filterwarnings("ignore", message="You are using `torch.load` with `weights_only=False`") | |
warnings.filterwarnings("ignore", message="Tried to instantiate class '__path__._path'") | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
# Suppress generic DeprecationWarnings (including LangChain) | |
warnings.filterwarnings("ignore", category=DeprecationWarning) | |
load_dotenv() | |
TOGETHER_AI_API = os.getenv("TOGETHER_AI") | |
# Streamlit Page Config | |
st.set_page_config(page_title="Law4her") | |
col1, col2, col3 = st.columns([1, 4, 1]) | |
with col2: | |
st.image( | |
"https://res.cloudinary.com/dzzhbgbnp/image/upload/v1736073326/lawforher_logo1_yznqxr.png" | |
) | |
st.markdown( | |
""" | |
<style> | |
div.stButton > button:first-child { | |
background-color: #ffffff; /* White background */ | |
color: #000000; /* Black text */ | |
border: 1px solid #000000; /* Optional: Add a black border */ | |
} | |
div.stButton > button:active { | |
background-color: #e0e0e0; /* Slightly darker white for active state */ | |
color: #000000; /* Black text remains the same */ | |
} | |
div[data-testid="stStatusWidget"] div button { | |
display: none; | |
} | |
.reportview-container { | |
margin-top: -2em; | |
} | |
#MainMenu {visibility: hidden;} | |
.stDeployButton {display:none;} | |
footer {visibility: hidden;} | |
#stDecoration {display:none;} | |
button[title="View fullscreen"]{ | |
visibility: hidden;} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Reset Conversation | |
def reset_conversation(): | |
st.session_state.messages = [{"role": "assistant", "content": "Hi, how can I help you?"}] | |
st.session_state.memory.clear() | |
# Initialize chat messages and memory | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role": "assistant", "content": "Hi, how can I help you?"}] | |
if "memory" not in st.session_state: | |
st.session_state.memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
return_messages=True | |
) | |
# Load embeddings and vectorstore | |
embeddings = HuggingFaceEmbeddings( | |
model_name="nomic-ai/nomic-embed-text-v1", | |
model_kwargs={"trust_remote_code": True, "revision": "289f532e14dbbbd5a04753fa58739e9ba766f3c7"}, | |
) | |
# Enable dangerous deserialization (safe only if the file is trusted and created by you) | |
db = FAISS.load_local("ipc_vector_db", embeddings, allow_dangerous_deserialization=True) | |
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 2, "max_length": 512}) | |
prompt_template = """<s>[INST]As a legal chatbot specializing in the Indian Penal Code, provide a concise and accurate answer based on the given context. Avoid unnecessary details or unrelated content. Only respond if the answer can be derived from the provided context; otherwise, say "The information is not available in the provided context." | |
CONTEXT: {context} | |
CHAT HISTORY: {chat_history} | |
QUESTION: {question} | |
ANSWER: | |
</s>[INST] | |
""" | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question", "chat_history"]) | |
# Initialize the Together API | |
llm = Together( | |
model="mistralai/Mistral-7B-Instruct-v0.2", | |
temperature=0.5, | |
max_tokens=1024, | |
together_api_key=TOGETHER_AI_API, | |
) | |
qa = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
memory=st.session_state.memory, | |
retriever=db_retriever, | |
combine_docs_chain_kwargs={"prompt": prompt}, | |
) | |
# Display chat history | |
for message in st.session_state.messages: | |
with st.chat_message(message.get("role")): | |
st.write(message.get("content")) | |
# User input | |
input_prompt = st.chat_input("Ask a legal question about the Indian Penal Code") | |
if input_prompt: | |
with st.chat_message("user"): | |
st.write(input_prompt) | |
st.session_state.messages.append({"role": "user", "content": input_prompt}) | |
with st.chat_message("assistant"): | |
with st.status("Thinking π‘...", expanded=True): | |
try: | |
# Pass the user question | |
result = qa.invoke(input=input_prompt) | |
full_response = result.get("answer", "") | |
# Ensure the answer is a string | |
if isinstance(full_response, list): | |
full_response = " ".join(full_response) | |
elif not isinstance(full_response, str): | |
full_response = str(full_response) | |
# Display the response | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) | |
st.write(full_response) | |
except Exception as e: | |
st.error(f"Error occurred: {e}") | |
# Add reset button | |
st.button("Reset All Chat π", on_click=reset_conversation) | |