chandansocial7 commited on
Commit
79a541c
1 Parent(s): c94f11a

Upload 4 files

Browse files
Files changed (4) hide show
  1. .gitattributes +35 -35
  2. README.md +13 -13
  3. app.py +493 -0
  4. requirements.txt +4 -0
.gitattributes CHANGED
@@ -1,35 +1,35 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,13 +1,13 @@
1
- ---
2
- title: Thisismine
3
- emoji: 📉
4
- colorFrom: purple
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 4.31.4
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: Thisismine
3
+ emoji: 📉
4
+ colorFrom: purple
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 4.31.4
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ """
3
+ This script runs a Gradio App for the Open-Sora model.
4
+
5
+ Usage:
6
+ python demo.py <config-path>
7
+ """
8
+
9
+ import argparse
10
+ import importlib
11
+ import os
12
+ import subprocess
13
+ import sys
14
+ import re
15
+ import json
16
+ import math
17
+
18
+ import spaces
19
+ import torch
20
+
21
+ import gradio as gr
22
+
23
+
24
+ MODEL_TYPES = ["v1.1"]
25
+ CONFIG_MAP = {
26
+ "v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
27
+ "v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
28
+ }
29
+ HF_STDIT_MAP = {
30
+ "v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2",
31
+ "v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
32
+ }
33
+ RESOLUTION_MAP = {
34
+ "144p": (256, 144),
35
+ "240p": (426, 240),
36
+ "360p": (480, 360),
37
+ "480p": (858, 480),
38
+ "720p": (1280, 720),
39
+ "1080p": (1920, 1080)
40
+ }
41
+
42
+
43
+ # ============================
44
+ # Utils
45
+ # ============================
46
+ def collect_references_batch(reference_paths, vae, image_size):
47
+ from opensora.datasets.utils import read_from_path
48
+
49
+ refs_x = []
50
+ for reference_path in reference_paths:
51
+ if reference_path is None:
52
+ refs_x.append([])
53
+ continue
54
+ ref_path = reference_path.split(";")
55
+ ref = []
56
+ for r_path in ref_path:
57
+ r = read_from_path(r_path, image_size, transform_name="resize_crop")
58
+ r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
59
+ r_x = r_x.squeeze(0)
60
+ ref.append(r_x)
61
+ refs_x.append(ref)
62
+ # refs_x: [batch, ref_num, C, T, H, W]
63
+ return refs_x
64
+
65
+
66
+ def process_mask_strategy(mask_strategy):
67
+ mask_batch = []
68
+ mask_strategy = mask_strategy.split(";")
69
+ for mask in mask_strategy:
70
+ mask_group = mask.split(",")
71
+ assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
72
+ if len(mask_group) == 1:
73
+ mask_group.extend(["0", "0", "0", "1", "0"])
74
+ elif len(mask_group) == 2:
75
+ mask_group.extend(["0", "0", "1", "0"])
76
+ elif len(mask_group) == 3:
77
+ mask_group.extend(["0", "1", "0"])
78
+ elif len(mask_group) == 4:
79
+ mask_group.extend(["1", "0"])
80
+ elif len(mask_group) == 5:
81
+ mask_group.append("0")
82
+ mask_batch.append(mask_group)
83
+ return mask_batch
84
+
85
+
86
+ def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
87
+ masks = []
88
+ for i, mask_strategy in enumerate(mask_strategys):
89
+ mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
90
+ if mask_strategy is None:
91
+ masks.append(mask)
92
+ continue
93
+ mask_strategy = process_mask_strategy(mask_strategy)
94
+ for mst in mask_strategy:
95
+ loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
96
+ loop_id = int(loop_id)
97
+ if loop_id != loop_i:
98
+ continue
99
+ m_id = int(m_id)
100
+ m_ref_start = int(m_ref_start)
101
+ m_length = int(m_length)
102
+ m_target_start = int(m_target_start)
103
+ edit_ratio = float(edit_ratio)
104
+ ref = refs_x[i][m_id] # [C, T, H, W]
105
+ if m_ref_start < 0:
106
+ m_ref_start = ref.shape[1] + m_ref_start
107
+ if m_target_start < 0:
108
+ # z: [B, C, T, H, W]
109
+ m_target_start = z.shape[2] + m_target_start
110
+ z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
111
+ mask[m_target_start : m_target_start + m_length] = edit_ratio
112
+ masks.append(mask)
113
+ masks = torch.stack(masks)
114
+ return masks
115
+
116
+
117
+ def process_prompts(prompts, num_loop):
118
+ from opensora.models.text_encoder.t5 import text_preprocessing
119
+
120
+ ret_prompts = []
121
+ for prompt in prompts:
122
+ if prompt.startswith("|0|"):
123
+ prompt_list = prompt.split("|")[1:]
124
+ text_list = []
125
+ for i in range(0, len(prompt_list), 2):
126
+ start_loop = int(prompt_list[i])
127
+ text = prompt_list[i + 1]
128
+ text = text_preprocessing(text)
129
+ end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
130
+ text_list.extend([text] * (end_loop - start_loop))
131
+ assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
132
+ ret_prompts.append(text_list)
133
+ else:
134
+ prompt = text_preprocessing(prompt)
135
+ ret_prompts.append([prompt] * num_loop)
136
+ return ret_prompts
137
+
138
+
139
+ def extract_json_from_prompts(prompts):
140
+ additional_infos = []
141
+ ret_prompts = []
142
+ for prompt in prompts:
143
+ parts = re.split(r"(?=[{\[])", prompt)
144
+ assert len(parts) <= 2, f"Invalid prompt: {prompt}"
145
+ ret_prompts.append(parts[0])
146
+ if len(parts) == 1:
147
+ additional_infos.append({})
148
+ else:
149
+ additional_infos.append(json.loads(parts[1]))
150
+ return ret_prompts, additional_infos
151
+
152
+
153
+ # ============================
154
+ # Runtime Environment
155
+ # ============================
156
+ def install_dependencies(enable_optimization=False):
157
+ """
158
+ Install the required dependencies for the demo if they are not already installed.
159
+ """
160
+
161
+ def _is_package_available(name) -> bool:
162
+ try:
163
+ importlib.import_module(name)
164
+ return True
165
+ except (ImportError, ModuleNotFoundError):
166
+ return False
167
+
168
+ # flash attention is needed no matter optimization is enabled or not
169
+ # because Hugging Face transformers detects flash_attn is a dependency in STDiT
170
+ # thus, we need to install it no matter what
171
+ if not _is_package_available("flash_attn"):
172
+ subprocess.run(
173
+ f"{sys.executable} -m pip install flash-attn --no-build-isolation",
174
+ env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
175
+ shell=True,
176
+ )
177
+
178
+ if enable_optimization:
179
+ # install apex for fused layernorm
180
+ if not _is_package_available("apex"):
181
+ subprocess.run(
182
+ f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
183
+ shell=True,
184
+ )
185
+
186
+ # install ninja
187
+ if not _is_package_available("ninja"):
188
+ subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
189
+
190
+ # install xformers
191
+ if not _is_package_available("xformers"):
192
+ subprocess.run(
193
+ f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
194
+ shell=True,
195
+ )
196
+
197
+
198
+ # ============================
199
+ # Model-related
200
+ # ============================
201
+ def read_config(config_path):
202
+ """
203
+ Read the configuration file.
204
+ """
205
+ from mmengine.config import Config
206
+
207
+ return Config.fromfile(config_path)
208
+
209
+
210
+ def build_models(model_type, config, enable_optimization=False):
211
+ """
212
+ Build the models for the given model type and configuration.
213
+ """
214
+ # build vae
215
+ from opensora.registry import MODELS, build_module
216
+
217
+ vae = build_module(config.vae, MODELS).cuda()
218
+
219
+ # build text encoder
220
+ text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
221
+ text_encoder.t5.model = text_encoder.t5.model.cuda()
222
+
223
+ # build stdit
224
+ # we load model from HuggingFace directly so that we don't need to
225
+ # handle model download logic in HuggingFace Space
226
+ from transformers import AutoModel
227
+
228
+ stdit = AutoModel.from_pretrained(
229
+ HF_STDIT_MAP[model_type],
230
+ enable_flash_attn=enable_optimization,
231
+ trust_remote_code=True,
232
+ ).cuda()
233
+
234
+ # build scheduler
235
+ from opensora.registry import SCHEDULERS
236
+
237
+ scheduler = build_module(config.scheduler, SCHEDULERS)
238
+
239
+ # hack for classifier-free guidance
240
+ text_encoder.y_embedder = stdit.y_embedder
241
+
242
+ # move modelst to device
243
+ vae = vae.to(torch.bfloat16).eval()
244
+ text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
245
+ stdit = stdit.to(torch.bfloat16).eval()
246
+
247
+ # clear cuda
248
+ torch.cuda.empty_cache()
249
+ return vae, text_encoder, stdit, scheduler
250
+
251
+
252
+ def parse_args():
253
+ parser = argparse.ArgumentParser()
254
+ parser.add_argument(
255
+ "--model-type",
256
+ default="v1.1-stage3",
257
+ choices=MODEL_TYPES,
258
+ help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
259
+ )
260
+ parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
261
+ parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
262
+ parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.")
263
+ parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
264
+ parser.add_argument(
265
+ "--enable-optimization",
266
+ action="store_true",
267
+ help="Whether to enable optimization such as flash attention and fused layernorm",
268
+ )
269
+ return parser.parse_args()
270
+
271
+
272
+ # ============================
273
+ # Main Gradio Script
274
+ # ============================
275
+ # as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
276
+ # so we can't pass the models to `run_inference` as arguments.
277
+ # instead, we need to define them globally so that we can access these models inside `run_inference`
278
+
279
+ # read config
280
+ args = parse_args()
281
+ config = read_config(CONFIG_MAP[args.model_type])
282
+
283
+ # make outputs dir
284
+ os.makedirs(args.output, exist_ok=True)
285
+
286
+ # disable torch jit as it can cause failure in gradio SDK
287
+ # gradio sdk uses torch with cuda 11.3
288
+ torch.jit._state.disable()
289
+
290
+ # set up
291
+ install_dependencies(enable_optimization=args.enable_optimization)
292
+
293
+ # import after installation
294
+ from opensora.datasets import IMG_FPS, save_sample
295
+ from opensora.utils.misc import to_torch_dtype
296
+
297
+ # some global variables
298
+ dtype = to_torch_dtype(config.dtype)
299
+ device = torch.device("cuda")
300
+
301
+ # build model
302
+ vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
303
+
304
+
305
+ @spaces.GPU(duration=200)
306
+ def run_inference(mode, prompt_text, resolution, length, reference_image):
307
+ with torch.inference_mode():
308
+ # ======================
309
+ # 1. Preparation
310
+ # ======================
311
+ # parse the inputs
312
+ resolution = RESOLUTION_MAP[resolution]
313
+
314
+ # compute number of loops
315
+ num_seconds = int(length.rstrip('s'))
316
+ total_number_of_frames = num_seconds * config.fps / config.frame_interval
317
+ num_loop = math.ceil(total_number_of_frames / config.num_frames)
318
+
319
+ # prepare model args
320
+ model_args = dict()
321
+ height = torch.tensor([resolution[0]], device=device, dtype=dtype)
322
+ width = torch.tensor([resolution[1]], device=device, dtype=dtype)
323
+ num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
324
+ ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
325
+ if config.num_frames == 1:
326
+ config.fps = IMG_FPS
327
+ fps = torch.tensor([config.fps], device=device, dtype=dtype)
328
+ model_args["height"] = height
329
+ model_args["width"] = width
330
+ model_args["num_frames"] = num_frames
331
+ model_args["ar"] = ar
332
+ model_args["fps"] = fps
333
+
334
+ # compute latent size
335
+ input_size = (config.num_frames, *resolution)
336
+ latent_size = vae.get_latent_size(input_size)
337
+
338
+ # process prompt
339
+ prompt_raw = [prompt_text]
340
+ prompt_raw, _ = extract_json_from_prompts(prompt_raw)
341
+ prompt_loops = process_prompts(prompt_raw, num_loop)
342
+ video_clips = []
343
+
344
+ # prepare mask strategy
345
+ if mode == "Text2Video":
346
+ mask_strategy = [None]
347
+ elif mode == "Image2Video":
348
+ mask_strategy = ['0']
349
+ else:
350
+ raise ValueError(f"Invalid mode: {mode}")
351
+
352
+ # =========================
353
+ # 2. Load reference images
354
+ # =========================
355
+ if mode == "Text2Video":
356
+ refs_x = collect_references_batch([None], vae, resolution)
357
+ elif mode == "Image2Video":
358
+ # save image to disk
359
+ from PIL import Image
360
+ im = Image.fromarray(reference_image)
361
+ im.save("test.jpg")
362
+ refs_x = collect_references_batch(["test.jpg"], vae, resolution)
363
+ else:
364
+ raise ValueError(f"Invalid mode: {mode}")
365
+
366
+ # 4.3. long video generation
367
+ for loop_i in range(num_loop):
368
+ # 4.4 sample in hidden space
369
+ batch_prompts = [prompt[loop_i] for prompt in prompt_loops]
370
+ z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
371
+
372
+ # 4.5. apply mask strategy
373
+ masks = None
374
+
375
+ # if cfg.reference_path is not None:
376
+ if loop_i > 0:
377
+ ref_x = vae.encode(video_clips[-1])
378
+ for j, refs in enumerate(refs_x):
379
+ if refs is None:
380
+ refs_x[j] = [ref_x[j]]
381
+ else:
382
+ refs.append(ref_x[j])
383
+ if mask_strategy[j] is None:
384
+ mask_strategy[j] = ""
385
+ else:
386
+ mask_strategy[j] += ";"
387
+ mask_strategy[
388
+ j
389
+ ] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"
390
+
391
+ masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
392
+
393
+ # 4.6. diffusion sampling
394
+ samples = scheduler.sample(
395
+ stdit,
396
+ text_encoder,
397
+ z=z,
398
+ prompts=batch_prompts,
399
+ device=device,
400
+ additional_args=model_args,
401
+ mask=masks, # scheduler must support mask
402
+ )
403
+ samples = vae.decode(samples.to(dtype))
404
+ video_clips.append(samples)
405
+
406
+ # 4.7. save video
407
+ if loop_i == num_loop - 1:
408
+ video_clips_list = [
409
+ video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :]
410
+ for i in range(1, num_loop)
411
+ ]
412
+ video = torch.cat(video_clips_list, dim=1)
413
+ save_path = f"{args.output}/sample"
414
+ saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True)
415
+ return saved_path
416
+
417
+
418
+ def main():
419
+ # create demo
420
+ with gr.Blocks() as demo:
421
+ with gr.Row():
422
+ with gr.Column():
423
+ gr.HTML(
424
+ """
425
+ <div style='text-align: center;'>
426
+ <p align="center">
427
+ <img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
428
+ </p>
429
+ <div style="display: flex; gap: 10px; justify-content: center;">
430
+ <a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
431
+ <a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&amp"></a>
432
+ <a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&amp"></a>
433
+ <a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&amp"></a>
434
+ <a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&amp"></a>
435
+ <a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&amp"></a>
436
+ <a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
437
+ </div>
438
+ <h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
439
+ </div>
440
+ """
441
+ )
442
+
443
+ with gr.Row():
444
+ with gr.Column():
445
+ mode = gr.Radio(
446
+ choices=["Text2Video", "Image2Video"],
447
+ value="Text2Video",
448
+ label="Usage",
449
+ info="Choose your usage scenario",
450
+ )
451
+ prompt_text = gr.Textbox(
452
+ label="Prompt",
453
+ placeholder="Describe your video here",
454
+ lines=4,
455
+ )
456
+ resolution = gr.Radio(
457
+ choices=["144p", "240p", "360p", "480p", "720p", "1080p"],
458
+ value="144p",
459
+ label="Resolution",
460
+ )
461
+ length = gr.Radio(
462
+ choices=["2s", "4s", "8s"],
463
+ value="2s",
464
+ label="Video Length",
465
+ info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
466
+ )
467
+
468
+ reference_image = gr.Image(
469
+ label="Reference Image (only used for Image2Video)",
470
+ )
471
+
472
+ with gr.Column():
473
+ output_video = gr.Video(
474
+ label="Output Video",
475
+ height="100%"
476
+ )
477
+
478
+ with gr.Row():
479
+ submit_button = gr.Button("Generate video")
480
+
481
+
482
+ submit_button.click(
483
+ fn=run_inference,
484
+ inputs=[mode, prompt_text, resolution, length, reference_image],
485
+ outputs=output_video
486
+ )
487
+
488
+ # launch
489
+ demo.launch(server_port=args.port, server_name=args.host, share=args.share)
490
+
491
+
492
+ if __name__ == "__main__":
493
+ main()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ xformers
2
+ transformers
3
+ pandarallel
4
+ git+https://github.com/hpcaitech/Open-Sora.git#egg=opensora