Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 11,284 Bytes
7e4123a e08d6ea 7e4123a 98ea61f 7e4123a e1047f6 7e4123a e08d6ea 7e4123a e08d6ea 7e4123a e08d6ea 7e4123a e08d6ea 7e4123a 73cb5b4 98ea61f 7e4123a 4bad4d8 7e4123a e08d6ea 7e4123a 067f48e 7e4123a e1047f6 49dc2bd e08d6ea 49dc2bd e1047f6 9b1bdca 49dc2bd 7e4123a 49dc2bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import re
import copy
import json
import datasets
import gradio as gr
import pandas as pd
from pingpong import PingPong
from pingpong.context import CtxLastWindowStrategy
from gen.openllm import gen_text as open_llm_gen_text
from gen.gemini_chat import gen_text as gemini_gen_text
from gen.gemini_chat import init as gemini_init
from constants.context import DEFAULT_GLOBAL_CTX
from paper.download import get_papers_from_arxiv_ids
from init import (
requested_arxiv_ids_df,
date_dict,
arxivid2data,
dataset_repo_id,
request_arxiv_repo_id,
hf_token,
gemini_api_key
)
from utils import push_to_hf_hub
gemini_init(gemini_api_key)
def get_paper_by_year(year):
months = sorted(date_dict[year].keys())
last_month = months[-1]
days = sorted(date_dict[year][last_month].keys())
last_day = days[-1]
papers = list(set(
[paper["title"] for paper in date_dict[year][last_month][last_day]]
))
return (
gr.Dropdown(choices=months, value=last_month),
gr.Dropdown(choices=days, value=last_day),
gr.Dropdown(choices=papers, value=papers[0])
)
def get_paper_by_month(year, month):
days = sorted(date_dict[year][month].keys())
last_day = days[-1]
papers = list(set(
[paper["title"] for paper in date_dict[year][month][last_day]]
))
return (
gr.Dropdown(choices=days, value=last_day),
gr.Dropdown(choices=papers, value=papers[0])
)
def get_paper_by_day(year, month, day):
papers = list(set(
[paper["title"] for paper in date_dict[year][month][day]]
))
return gr.Dropdown(choices=papers, value=papers[0])
# 2307.02040
def set_papers(year, month, day, title):
title = title.split("]")[1].strip()
papers = []
for paper in date_dict[year][month][day]:
papers.append(paper["title"])
if paper["title"] == title:
arxiv_id = paper["arxiv_id"]
papers = list(set(papers))
return (
arxiv_id,
gr.Dropdown(choices=papers, value=title),
gr.Textbox("")
)
def set_paper(year, month, day, paper_title):
selected_paper = None
for paper in date_dict[year][month][day]:
if paper["title"] == paper_title:
selected_paper = paper
break
return (
selected_paper['arxiv_id'],
gr.Markdown(f"# {selected_paper['title']}"),
gr.Markdown(
"[![arXiv](https://img.shields.io/badge/arXiv-%s-b31b1b.svg?style=for-the-badge)](https://arxiv.org/abs/%s)" % (selected_paper['arxiv_id'], selected_paper['arxiv_id']) + " "
"[![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-lg.svg)](https://huggingface.co/papers/%s)" % selected_paper['arxiv_id']
),
gr.Markdown(selected_paper["summary"]),
gr.Markdown(f"### π {selected_paper['0_question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['0_additional_depth_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['0_additional_breath_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}"),
gr.Markdown(f"### π {selected_paper['1_question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['1_additional_depth_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['1_additional_breath_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}"),
gr.Markdown(f"### π {selected_paper['2_question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['2_additional_depth_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}"),
gr.Markdown(f"### ππ {selected_paper['2_additional_breath_q:follow up question']}"),
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}"),
)
def set_date(title):
title = title.split("]")[1].strip()
for _, (year, months) in enumerate(date_dict.items()):
for _, (month, days) in enumerate(months.items()):
for _, (day, papers) in enumerate(days.items()):
for paper in papers:
if paper['title'] == title:
return (
gr.Dropdown(value=year),
gr.Dropdown(choices=sorted(months), value=month),
gr.Dropdown(choices=sorted(days), value=day),
)
def change_exp_type(exp_type):
if exp_type == "ELI5":
return (
gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
)
else:
return (
gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
)
def _filter_duplicate_arxiv_ids(arxiv_ids_to_be_added):
ds1 = datasets.load_dataset(request_arxiv_repo_id)
ds2 = datasets.load_dataset(dataset_repo_id)
unique_arxiv_ids = set()
for d in ds1['train']:
arxiv_ids = d['Requested arXiv IDs']
unique_arxiv_ids = set(list(unique_arxiv_ids) + arxiv_ids)
if len(ds2) > 1:
for d in ds2['train']:
arxiv_id = d['arxiv_id']
unique_arxiv_ids.add(arxiv_id)
return list(set(arxiv_ids_to_be_added) - unique_arxiv_ids)
def _is_arxiv_id_valid(arxiv_id):
pattern = r"^\d{4}\.\d{5}$"
return bool(re.match(pattern, arxiv_id))
def _get_valid_arxiv_ids(arxiv_ids_str):
valid_arxiv_ids = []
invalid_arxiv_ids = []
for arxiv_id in arxiv_ids_str.split(","):
arxiv_id = arxiv_id.strip()
if _is_arxiv_id_valid(arxiv_id):
valid_arxiv_ids.append(arxiv_id)
else:
invalid_arxiv_ids.append(arxiv_id)
return valid_arxiv_ids, invalid_arxiv_ids
def add_arxiv_ids_to_queue(queue, arxiv_ids_str):
valid_arxiv_ids, invalid_arxiv_ids = _get_valid_arxiv_ids(arxiv_ids_str)
if len(invalid_arxiv_ids) > 0:
gr.Warning(f"found invalid arXiv ids as in {invalid_arxiv_ids}")
if len(valid_arxiv_ids) > 0:
valid_arxiv_ids = _filter_duplicate_arxiv_ids(valid_arxiv_ids)
if len(valid_arxiv_ids) > 0:
papers = get_papers_from_arxiv_ids(valid_arxiv_ids)
valid_arxiv_ids = [[f"[{paper['paper']['id']}] {paper['title']}"] for paper in papers]
gr.Warning(f"Processing [{valid_arxiv_ids}]. Other requested arXiv IDs not found on this list should be already processed or being processed...")
valid_arxiv_ids = pd.DataFrame({'Requested arXiv IDs': valid_arxiv_ids})
queue = pd.concat([queue, valid_arxiv_ids])
queue.reset_index(drop=True)
ds = datasets.Dataset.from_pandas(valid_arxiv_ids)
push_to_hf_hub(ds, request_arxiv_repo_id, hf_token)
else:
gr.Warning(f"All requested arXiv IDs are already processed or being processed...")
else:
gr.Warning(f"No valid arXiv IDs found...")
return (
queue, gr.Textbox("")
)
# Chat
def before_chat_begin():
return (
gr.Button(interactive=False),
gr.Button(interactive=False)
)
def _build_prompts(ppmanager, global_context, win_size=3):
dummy_ppm = copy.deepcopy(ppmanager)
dummy_ppm.ctx = global_context
lws = CtxLastWindowStrategy(win_size)
return lws(dummy_ppm)
async def chat_stream(idx, local_data, user_prompt, chat_state, ctx_num_lconv=3):
paper = arxivid2data[idx]['paper']
ppm = chat_state["ppmanager_type"].from_json(json.dumps(local_data))
ppm.add_pingpong(
PingPong(
user_prompt,
""
)
)
prompt = _build_prompts(ppm, DEFAULT_GLOBAL_CTX % paper["full_text"].replace("\n", " ")[:30000], ctx_num_lconv)
# async for result in open_llm_gen_text(
# prompt,
# hf_model='meta-llama/Llama-2-70b-chat-hf', hf_token=hf_token,
# parameters={
# 'max_new_tokens': 4906,
# 'do_sample': True,
# 'return_full_text': False,
# 'temperature': 0.7,
# 'top_k': 10,
# 'repetition_penalty': 1.2
# }
# ):
try:
async for result in gemini_gen_text(prompt):
ppm.append_pong(result)
yield "", ppm.build_uis(), str(ppm), gr.update(interactive=False), gr.update(interactive=False)
yield "", ppm.build_uis(), str(ppm), gr.update(interactive=True), gr.update(interactive=True)
except Exception as e:
print(str(e))
gr.Warning("Gemini refused to answer further. This happens because there were some safety issues in the answer.")
yield "", ppm.build_uis(), str(ppm), gr.update(interactive=True), gr.update(interactive=True)
def chat_reset(local_data, chat_state):
ppm = chat_state["ppmanager_type"].from_json(json.dumps(local_data))
ppm.pingpongs = []
return "", ppm.build_uis(), str(ppm), gr.update(interactive=True), gr.update(interactive=True) |