chbsaikiran commited on
Commit
2b9a831
·
1 Parent(s): f9f8ce6

bug due to file name issue fix

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. transformer.py +161 -98
app.py CHANGED
@@ -7,7 +7,7 @@ import gradio as gr
7
  tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Using GPT-2 tokenizer for compatibility
8
 
9
  # Load model
10
- from train_get2-8-init import GPT, GPTConfig
11
 
12
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
13
 
 
7
  tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Using GPT-2 tokenizer for compatibility
8
 
9
  # Load model
10
+ from transformer import GPT, GPTConfig
11
 
12
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
13
 
transformer.py CHANGED
@@ -1,125 +1,188 @@
 
 
 
 
 
 
1
  import torch
2
  import torch.nn as nn
3
- import torch.nn.functional as F
4
- from dataclasses import dataclass
 
 
5
 
6
- @dataclass
7
- class Config:
8
- vocab_size: int = 50257
9
- max_seq_len: int = 2048
10
- dim: int = 768
11
- num_layers: int = 12
12
- num_heads: int = 12
13
- dropout: float = 0.1
14
-
15
- class MultiHeadAttention(nn.Module):
16
  def __init__(self, config):
17
  super().__init__()
18
- self.config = config
19
- self.n_head = config.num_heads
20
- self.n_embd = config.dim
21
-
22
- # Linear projections for Q, K, V
23
- self.c_attn = nn.Linear(config.dim, 3 * config.dim) # [n_embd, 3 * n_embd]
24
- self.c_proj = nn.Linear(config.dim, config.dim) # [n_embd, n_embd]
25
-
26
- self.attn_dropout = nn.Dropout(config.dropout)
27
- self.resid_dropout = nn.Dropout(config.dropout)
28
 
29
  def forward(self, x):
30
- B, T, C = x.size() # [B, T, n_embd]
31
-
32
- # Linear projection and split into Q, K, V
33
- q, k, v = self.c_attn(x).split(self.n_embd, dim=2) # [B, T, n_embd] each
34
-
35
- # Reshape for multi-head attention
36
- k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
37
- q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
38
- v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
39
-
40
- # Attention scores
41
- att = (q @ k.transpose(-2, -1)) * (1.0 / (k.size(-1) ** 0.5)) # [B, n_head, T, T]
42
- att = F.softmax(att, dim=-1) # [B, n_head, T, T]
43
- att = self.attn_dropout(att) # [B, n_head, T, T]
44
-
45
- # Weighted sum of values
46
- y = att @ v # [B, n_head, T, n_embd/n_head]
47
-
48
- # Reshape and project
49
- y = y.transpose(1, 2).contiguous().view(B, T, C) # [B, T, n_embd]
50
- y = self.c_proj(y) # [B, T, n_embd]
51
- y = self.resid_dropout(y) # [B, T, n_embd]
52
-
53
  return y
54
 
55
- class FeedForward(nn.Module):
 
 
56
  def __init__(self, config):
57
  super().__init__()
58
- self.c_fc = nn.Linear(config.dim, 4 * config.dim) # [n_embd, 4 * n_embd]
59
- self.c_proj = nn.Linear(4 * config.dim, config.dim) # [4 * n_embd, n_embd]
60
- self.dropout = nn.Dropout(config.dropout)
 
61
 
62
  def forward(self, x):
63
- x = self.c_fc(x) # [B, T, 4 * n_embd]
64
- x = F.gelu(x) # [B, T, 4 * n_embd]
65
- x = self.c_proj(x) # [B, T, n_embd]
66
- x = self.dropout(x) # [B, T, n_embd]
67
  return x
68
 
69
- class TransformerBlock(nn.Module):
 
70
  def __init__(self, config):
71
  super().__init__()
72
- self.ln_1 = nn.LayerNorm(config.dim) # [n_embd]
73
- self.attn = MultiHeadAttention(config)
74
- self.ln_2 = nn.LayerNorm(config.dim) # [n_embd]
75
- self.mlp = FeedForward(config)
76
 
77
  def forward(self, x):
78
- x = x + self.attn(self.ln_1(x)) # [B, T, n_embd]
79
- x = x + self.mlp(self.ln_2(x)) # [B, T, n_embd]
80
  return x
81
 
82
- class DecoderOnlyTransformer(nn.Module):
 
 
 
 
 
 
 
 
 
 
 
83
  def __init__(self, config):
84
  super().__init__()
85
  self.config = config
86
- self.wte = nn.Embedding(config.vocab_size, config.dim) # [vocab_size, n_embd]
87
- self.wpe = nn.Embedding(config.max_seq_len, config.dim) # [max_seq_len, n_embd]
88
- self.drop = nn.Dropout(config.dropout)
89
- self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_layers)])
90
- self.ln_f = nn.LayerNorm(config.dim) # [n_embd]
91
- self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=False) # [n_embd, vocab_size]
92
-
 
 
 
 
 
 
93
  self.apply(self._init_weights)
94
 
95
  def _init_weights(self, module):
96
- if isinstance(module, (nn.Linear, nn.Embedding)):
97
- module.weight.data.normal_(mean=0.0, std=0.02)
98
- if isinstance(module, nn.Linear) and module.bias is not None:
99
- module.bias.data.zero_()
100
- elif isinstance(module, nn.LayerNorm):
101
- module.bias.data.zero_()
102
- module.weight.data.fill_(1.0)
103
-
104
- def forward(self, idx):
105
- B, T = idx.size() # [B, T]
106
-
107
- # Positional embeddings
108
- pos = torch.arange(0, T, dtype=torch.long, device=idx.device).unsqueeze(0) # [1, T]
109
-
110
- # Token and position embeddings
111
- tok_emb = self.wte(idx) # [B, T, n_embd]
112
- pos_emb = self.wpe(pos) # [1, T, n_embd]
113
-
114
- # Combine embeddings and apply dropout
115
- x = self.drop(tok_emb + pos_emb) # [B, T, n_embd]
116
-
117
- # Transformer blocks
118
- for block in self.blocks:
119
- x = block(x) # [B, T, n_embd]
120
-
121
- # Final layer norm and linear projection
122
- x = self.ln_f(x) # [B, T, n_embd]
123
- logits = self.lm_head(x) # [B, T, vocab_size]
124
-
125
- return logits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Solving for residual std scaling issue
2
+ import os
3
+ import math
4
+ import time
5
+ import inspect
6
+ from dataclasses import dataclass
7
  import torch
8
  import torch.nn as nn
9
+ from torch.nn import functional as F
10
+
11
+
12
+ class CausalSelfAttention(nn.Module):
13
 
 
 
 
 
 
 
 
 
 
 
14
  def __init__(self, config):
15
  super().__init__()
16
+ assert config.n_embd % config.n_head == 0
17
+ # key, query, value projections for all heads, but in a batch
18
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
19
+ # output projection
20
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
21
+ self.c_proj.NANGPT_SCALE_INIT = 1
22
+ # regularization
23
+ self.n_head = config.n_head
24
+ self.n_embd = config.n_embd
25
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
26
 
27
  def forward(self, x):
28
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
29
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
30
+ # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
31
+ # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
32
+ qkv = self.c_attn(x)
33
+ q, k, v = qkv.split(self.n_embd, dim=2)
34
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
35
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
36
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
37
+
38
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
39
+ att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
40
+ att = F.softmax(att, dim=-1)
41
+ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
42
+
43
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
44
+ # output projection
45
+ y = self.c_proj(y)
 
 
 
 
 
46
  return y
47
 
48
+
49
+ class MLP(nn.Module):
50
+
51
  def __init__(self, config):
52
  super().__init__()
53
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
54
+ self.gelu = nn.GELU(approximate='tanh')
55
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
56
+ self.c_proj.NANOGPT_SCALE_INIT = 1
57
 
58
  def forward(self, x):
59
+ x = self.c_fc(x)
60
+ x = self.gelu(x)
61
+ x = self.c_proj(x)
 
62
  return x
63
 
64
+ class Block(nn.Module):
65
+
66
  def __init__(self, config):
67
  super().__init__()
68
+ self.ln_1 = nn.LayerNorm(config.n_embd)
69
+ self.attn = CausalSelfAttention(config)
70
+ self.ln_2 = nn.LayerNorm(config.n_embd)
71
+ self.mlp = MLP(config)
72
 
73
  def forward(self, x):
74
+ x = x + self.attn(self.ln_1(x))
75
+ x = x + self.mlp(self.ln_2(x))
76
  return x
77
 
78
+
79
+ @dataclass
80
+ class GPTConfig:
81
+ block_size: int = 1024 # max sequence length
82
+ vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
83
+ n_layer: int = 12 # number of layers
84
+ n_head: int = 12 # number of heads
85
+ n_embd: int = 768 # embedding dimension
86
+
87
+
88
+ class GPT(nn.Module):
89
+
90
  def __init__(self, config):
91
  super().__init__()
92
  self.config = config
93
+
94
+ self.transformer = nn.ModuleDict(dict(
95
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
96
+ wpe = nn.Embedding(config.block_size, config.n_embd),
97
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
98
+ ln_f = nn.LayerNorm(config.n_embd),
99
+ ))
100
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
101
+
102
+ # weight sharing
103
+ self.transformer.wte.weight = self.lm_head.weight
104
+
105
+ # weight initialization
106
  self.apply(self._init_weights)
107
 
108
  def _init_weights(self, module):
109
+ if isinstance(module, nn.Linear):
110
+ std = 0.02
111
+ if hasattr(module, 'NANGPT_SCALE_INIT'):
112
+ std *= (2 * self.config.n_layer) ** -0.5
113
+ torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
114
+ if module.bias is not None:
115
+ torch.nn.init.zeros_(module.bias)
116
+ elif isinstance(module, nn.Embedding):
117
+ torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
118
+
119
+
120
+
121
+ def forward(self, idx, targets=None):
122
+ # idx is of shape (B, T)
123
+ B, T = idx.size()
124
+ assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
125
+ # forward the token and posisition embeddings
126
+ pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
127
+ pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
128
+ tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
129
+ x = tok_emb + pos_emb
130
+ # forward the blocks of the transformer
131
+ for block in self.transformer.h:
132
+ x = block(x)
133
+ # forward the final layernorm and the classifier
134
+ x = self.transformer.ln_f(x)
135
+ logits = self.lm_head(x) # (B, T, vocab_size)
136
+ loss = None
137
+ if targets is not None:
138
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
139
+ return logits, loss
140
+
141
+ @classmethod
142
+ def from_pretrained(cls, model_type):
143
+ """Loads pretrained GPT-2 model weights from huggingface"""
144
+ assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
145
+ from transformers import GPT2LMHeadModel
146
+ print("loading weights from pretrained gpt: %s" % model_type)
147
+
148
+ # n_layer, n_head and n_embd are determined from model_type
149
+ config_args = {
150
+ 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
151
+ 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
152
+ 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
153
+ 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
154
+ }[model_type]
155
+ config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
156
+ config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
157
+ # create a from-scratch initialized minGPT model
158
+ config = GPTConfig(**config_args)
159
+ model = GPT(config)
160
+ sd = model.state_dict()
161
+ sd_keys = sd.keys()
162
+ sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
163
+
164
+ # init a huggingface/transformers model
165
+ model_hf = GPT2LMHeadModel.from_pretrained(model_type)
166
+ sd_hf = model_hf.state_dict()
167
+
168
+ # copy while ensuring all of the parameters are aligned and match in names and shapes
169
+ sd_keys_hf = sd_hf.keys()
170
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
171
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
172
+ transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
173
+ # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
174
+ # this means that we have to transpose these weights when we import them
175
+ assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
176
+ for k in sd_keys_hf:
177
+ if any(k.endswith(w) for w in transposed):
178
+ # special treatment for the Conv1D weights we need to transpose
179
+ assert sd_hf[k].shape[::-1] == sd[k].shape
180
+ with torch.no_grad():
181
+ sd[k].copy_(sd_hf[k].t())
182
+ else:
183
+ # vanilla copy over the other parameters
184
+ assert sd_hf[k].shape == sd[k].shape
185
+ with torch.no_grad():
186
+ sd[k].copy_(sd_hf[k])
187
+
188
+ return model